
Filip Kobierski
242336

PRACA DYPLOMOWA
inżynierska

na kierunku Informatyka Stosowana

Aplikacja CLI w języku Zig do analizy dźwięku
wzorowana na MusicScope

Instytut Informatyki I72

Promotor: dr hab. inż. Bartłomiej Stasiak

ŁÓDŹ 2026

Spis treści

Wstęp 6

Cel i zakres pracy 7

1 Analiza albumów muzycznych 8

2 Cechy dobrego programu do analizy albumów 9
2.1 Dostępność . 9

2.1.1 Dostępność technologiczna . 9
2.1.2 Dostępność dla osób z niepełnosprawnościami (accessibility) . . 10
2.1.3 Dostępność prawna . 10

2.2 Kompleksowość analizy . 10
2.2.1 Przykładowe zastosowanie wskaźników 11

2.3 Efektywność . 11
2.3.1 Ergonomia interfejsu . 11
2.3.2 Efektywność analizy . 11
2.3.3 Pomiar efektywności analizy . 11
2.3.4 Ergonomia raportów . 13

3 MusicScope 14
3.1 Dostępność technologiczna . 14
3.2 Accessibility . 14
3.3 Dostępność prawna . 15

3.3.1 Uzyskiwanie . 15
3.3.2 Rozpowszechnianie . 15

3.4 Kompleksowość analizy . 15
3.5 Ergonomia interfejsu . 16

3.5.1 Przedstawienie interfejsu . 16
3.5.2 Przedstawienie użytkowania . 18
3.5.3 Ocena . 21

3.6 Efektywność analizy . 21
3.7 Ergonomia raportów . 22

3.7.1 Podświetlanie składni . 22
3.7.2 Szerokość tabeli . 22
3.7.3 Ekscesywna ilość raportowanych danych 23

3.8 Podsumowanie . 23

4 Próba pierwsza: SINMS 24
4.1 Interfejs użytkownika . 24

4.1.1 Usunięcie zbędnych elementów GUI 24
4.1.2 Zmiana celu interfejsu analizy . 25
4.1.3 Interfejs linii komend (CLI) . 25
4.1.4 Deklaratywność . 25
4.1.5 Podsumowanie . 26

4.2 Język programowania i biblioteki . 26
4.3 Raportowanie . 27

3

4.4 Efektywność działania . 28
4.5 Status quo SINMS . 28
4.6 Haskellowe SINMS . 29

5 Próba druga: sd2 29
5.1 Język programowania i biblioteki . 30

5.1.1 C++ . 30
5.1.2 Rust . 30
5.1.3 Zig . 31

5.2 Zalety Ziga . 32
5.2.1 Pełna kompatybilność z C . 32
5.2.2 Koncept comptime . 32
5.2.3 Instrukcje defer i errdefer . 34
5.2.4 Przenośność . 34
5.2.5 Lepsze doświadczenie tworzenia oprogramowania 36

5.3 Rozwój sd2 . 36
5.3.1 Porównanie do SINMS . 36
5.3.2 Pierwsza biblioteka Ziga . 37
5.3.3 Biblioteka yazap i model open-source 37
5.3.4 small_float . 37
5.3.5 Nowe TrackInfo . 37
5.3.6 Standard REUSE . 38
5.3.7 Zmiany biblioteki standardowej Ziga 38
5.3.8 Plik README . 39

5.4 Efektywność działania . 40
5.5 Status quo sd2 . 42

Podsumowanie 43

Podziękowania 44

Bibliografia 45

Spis rysunków 48

Spis tabel 48

Spis kodów 48

4

Streszczenie

Ta praca dokumentuje proces powstania projektu sd2 od konceptów poczętych przed
napisaniem pojedynczej linijki kodu aż po upublicznienie gotowego rozwiązania na plat-
formie hostingowej git.

sd2 to oprogramowanie do analizy albumów muzycznych będące wolnościową re-
implementacją od zera (ang. rewrite from scratch) funkcjonalności oferowanych przez
własnościowy program MusicScope. Jego celem jest naprawienie największych błę-
dów MusicScope i zapewnienie powszechnego dostępu do programu będącego efek-
tem tej pracy.

W tym dokumencie zawiera się zdefiniowanie zagadnienia analizy albumów mu-
zycznych, przedstawienie cech dobrego programu do analizy albumów muzycznych,
analiza istniejącego już programu, proces projektowania reimplementacji trzech pro-
totypów w trzech językach programowania, proces rozwoju ostatniego z nich w peł-
noprawny produkt gotowy do użycia w prawdziwym życiu oraz analiza tego produktu
wedle wcześniej wyznaczonych kryteriów.

Słowa kluczowe: audio, analiza dźwięku, CLI, ebur128, Zig
Keywords: audio, audio analysis, CLI, ebur128, Zig

5

Wstęp

Reimplementacje od zera są tak stare jak samo oprogramowanie i są szczególnie
trudne gdy deweloperzy nie mają dostępu do kodu źródłowego. Są one jednak szcze-
gólnie ważne w przypadku gdy reimplementacja rozpowszechniana jest jako Wolne
Oprogramowanie – tak właśnie powstał GNU Emacs [34] po raz pierwszy opublikowany
w 1985 roku, a używany do dziś na przykład przeze mnie do tworzenia oprogramowania
i dokumentów.

Zagadnienie analizy albumów muzycznych, które jest głównym tematem niniejszej
pracy, opiszę w detalach w sekcji 1, jednak już teraz napiszę, że jest to bardzo niszowa
dziedzina. Posługuję się oprogramowaniem analizującym albumy od niemalże pięciu
lat, więc jestem w stanie wskazać pożądane cechy tego oprogramowania, co robię
w sekcji 2. Według mnie jedyne używalne rozwiązanie dla użytkownika końcowego
to MusicScope, które jest niedostępne i ma mnóstwo wad o co opisuję w sekcji 3. Z
tego powodu uważam, że sd2, czyli moja finałowa reimplementacja, jest szczególnie
przydatna i pożądana.

W sekcjach 4–5 opisuję i uzasadniam najważniejsze decyzje projektowe prób re-
implementacji, od języka programowania przez struktury danych aż po paradygmat in-
terfejsu użytkownika. W tych rozdziałach znajdują się również pomiary efektywności
funkcjonalnych prototypów.

Na koniec opisuję i komentuję proces tworzenia i utrzymywania sd2. Porównuję je
również z MusicScope obiektywnie udowadniając, że mój projekt wyzwolenia i ulepsze-
nia tego narzędzia zakończył się sukcesem.

Już we wstępie zachęcę natomiast do analizy kodu źródłowego mojego i samodziel-
nego przetestowania jak działa. Niezbędne do tego informacje znajdują się na stronie
https://codeberg.org/fkobi/sd2.

6

https://codeberg.org/fkobi/sd2

Cel i zakres pracy

Celem niniejszej pracy jest reimplementacja funkcjonalności tworzenia raportów teksto-
wych programu do analizy dźwięku MusicScope bez korzystania z jego kodu źródło-
wego (ang. rewrite from scratch). Tworzenie programu od zera pozwala zmienić wiele
kluczowych jego aspektów. To przedsięwzięcie ma również na celu:

1. uczynienie oprogramowania dostępnym

• opublikowanie go jako Wolne Oprogramowanie,
• natywne wsparcie jądra Linux,

2. ulepszenie ergonomii zarówno programu jak i generowanych raportów,

3. znaczące zwiększenie efektywności analizy

• zmiana paradygmatu interfejsu użytkownika z GUI aktualizowanego w czasie
rzeczywistym na CLI,

• wykorzystanie języka programowania Zig.

Wybrałem ten temat głównie z dwóch powodów. Po pierwsze chciałem aby moja
praca inżynierska rozwiązywała realny problem, a po drugie aby była pretekstem do na-
uczenia się nowego języka programowania systemowego. Wiem, że rozwiązany przeze
mnie problem jest realny – przez pięć lat byłem Redaktorem Muzycznym w Studenckim
Radiu Żak Politechniki Łódzkiej, z czego prawie dwa lata pełniłem funkcję Szefa Re-
dakcji muzycznej. Ponadto od jeszcze dłuższego czasu jestem audiofilem, więc można
powiedzieć, że ów problem dotyka mnie na porządku dziennym. Jeśli chodzi o progra-
mowanie systemów, na początku roku 2024 wiedziałem o Zigu tylko to, że, podobnie
jak C, jest językiem programowania systemowego z ręcznie zarządzaną pamięcią oraz,
że jego interoperacyjność z C jest na bardzo wysokim poziomie. Teraz napisałem kom-
pleksowy program w tym języku wykorzystując biblioteki w obydwu językach. Co chyba
ważniejsze, zaproponowane przeze mnie zmiany zostały przyjęte do używanych przeze
mnie bibliotek, w tym biblioteki standardowej Ziga!

7

1 Analiza albumów muzycznych

W kontekście tej pracy album oznacza wydany zbiór utworów muzycznych. Rozpocznę
więc od rozpatrzenia go z perspektywy przetwarzania sygnałów.

Album dziełem muzycznym więc, przetwarzany jest dźwięk, czyli słyszalne pasmo
fal akustycznych.

Nieodzowną cechą albumu jest to, że jest on sygnałem o ściśle określonej zawarto-
ści. Jest tak ponieważ album to dystrybucja efektu procesu produkcji muzycznej, czyli
miksu finałowego zwanego też masterem. Kopie mastera są rozpowszechniane na róż-
nych mediach, od analogowych płyt winylowych aż po cyfrowe systemy wbudowane
[33]. Album jako sygnał ma więc jedną poprawną formę. Nawet resampling w wyż-
szej częstotliwości niebędącej wielokrotnością oryginalnej zmienia w małym stopniu
zapis i kopia w (niepotrzebnie) wyższej rozdzielczości nie będzie identyczna na pozio-
mie bitowym (bit-perfect).

Wykorzystując bezstratne kodeki można zarejestrować dźwięk na cyfrowym no-
śniku. W kontekście muzyki, w przypadku modulowania PCM1, sygnał dźwiękowy, musi
być zapisany w bezstratnym kodeku przynajmniej z częstotliwością 44100 Hz i szesna-
stoma bitami głębokości [8]. Ta jakość ma również miano Redbook audio, a standard
zwie się Redbookowym ze względu na to, że dokument który go definiował był czer-
woną książką.

Dane cyfrowe mogą być idealnie reprodukowane więc dystrybucja cyfrowa umożli-
wia słuchaczom doświadczenie dzieła w dokładnie takiej formie jaką przygotował arty-
sta. Jest to możliwe tylko jeśli skorzystają z bezstratnego kodeka dźwięku, co za sprawą
ustandaryzowanego Wolnego Bezstratnego Kodeka Dźwięku [11] nie jest trudne. Pliki,
z których odtwarzana jest muzyka mogą być jednak wynikiem przetwarzania stratnego.
Źródło stratności może wynikać między innymi z:

• fizyczności medium (np. uszkodzona płyta lub czytnik płyt),

• reenkodowania z użyciem stratnego kodeka,

• użycia filtrów wprowadzających przestery, w tym ISP (ang. Inter-Sample Peaks).

Założenie, że cyfrowość zapisu zapewnia bezstratność treści jest niepoprawne i może
mieć poważne konsekwencje [23].

Instytucje i jednostki prowadzące muzyczne bazy danych którym zależy na jakości
dźwięku mogą więc analizować posiadane pliki dźwiękowe celem sprawdzenia ich ja-
kości. W Studenckim Radiu Żak Politechniki Łódzkiej na przykład ten krok jest częścią
cotygodniowego procesu wcielania nowych utworów do emisji.

1Ze względu na skrajną niszowość dystrybucji muzyki w formacie DSD nie będę jej omawiał w tej
pracy.

8

2 Cechy dobrego programu do analizy albumów

Korzystam z oprogramowania do analizy albumów około pięciu lat. W tym czasie przez
niespełna dwa lata pełniłem w Żaku rolę Szefa Redakcji Muzycznej i byłem odpowie-
dzialny za kontrolę jakości utworów wgrywanych do naszej bazy danych. Uważam więc,
że mam wystarczająco dużo doświadczenia abym mógł wskazać najważniejsze cechy
dobrego programu do analizy albumów.

2.1 Dostępność

Programu, który nie jest dostępny nie można użyć więc jego inne cechy są pomijalne.
Tym samym jest to jego najważniejsza charakterystyka.

Najbardziej podstawowym typem dostępności jest dostęp do danych programu (np.
posiadanie płyty lub możliwość pobrania plików z internetu). Oprogramowanie, którego
dane są niedostępne (np. port Minecrafta na AppleTV [21] można sklasyfikować jako
lost media2). Ten status czyni oprogramowanie fundamentalnie nieużywalnym całkowi-
cie wykluczając wszelkie dalsze rodzaje dostępności. Z tego powodu w tej pracy będę
pisał o oprogramowaniu, którego dane są dostępne.

Dostępność oprogramowania definiuję i oceniam więc trzema charakterystykami
które opisałem w poniższych sekcjach.

2.1.1 Dostępność technologiczna

Posiadanie kodu źródłowego bądź plików dystrybucji oprogramowania nie jest warun-
kiem dostępności technologicznej; program musi działać z rozsądną efektywnością.

Jak zazwyczaj w informatyce, dostępność technologiczną można skategoryzować
na poziomie oprogramowania (S) i osprzętowania (H). Poniżej wymieniłem przykła-
dowe wymagania:

• H: architektura procesora,

• H: proste wymagania sprzętowe (np. 2GB pamięci operacyjnej),

• H: założenie obecności pewnego sprzętu (np. CUDA),

• S: system operacyjny,

• S: format pliku wykonywalnego,

• S: obecność bibliotek systemowych (np. GNU libc).
2:https://lostmediaarchive.fandom.com/wiki/Minecraft_(lost_Apple_TV_port_of_the_

game)

9

https://lostmediaarchive.fandom.com/wiki/Minecraft_(lost_Apple_TV_port_of_the_game)
https://lostmediaarchive.fandom.com/wiki/Minecraft_(lost_Apple_TV_port_of_the_game)

2.1.2 Dostępność dla osób z niepełnosprawnościami (accessibility)

Program może technicznie być w stanie działać na danym sprzęcie, jednak użytkownik
dalej może nie być w stanie z niego skorzystać ze względu na swoje niepełnosprawno-
ści.

Przykładowo oprogramowanie z GUI na OpenBSD aby być dostępne dla osób niewi-
domych powinno implementować Assistive Technology Service Provider Interface [28]
aby być kompatybilnym z czytnikami tekstu takimi jak Orca [29].

2.1.3 Dostępność prawna

Z punktu widzenia prawa można powiedzieć, że Wolne Oprogramowanie jest definicją
dostępności, a rozwiązania własnościowe są jego antytezą.

Wolne oprogramowanie wedle definicji Europejskiej Fundacji Wolnego Oprogramo-
wania gwarantuje swoim użytkownikom cztery wolności:

1. wolność korzystania,

2. wolność analizy,

3. wolność dystrybucji,

4. wolność ulepszeń (zmian).

Na dłuższą metę dostępność prawna jest więc najistotniejsza; dzięki czwartej wol-
ności dwa pozostałe typy dostępności mogą zostać ulepszone.

2.2 Kompleksowość analizy

Analiza ma ocenić jak bardzo zawartość różnych plików jest podobna do mastera celem
wybrania tego o najwyższej jakości.

Jeśli finałowy miks jest dostępny, to ocena podobieństwa jest tak prosta jak dodanie
do siebie sygnału testowanego i odwrotności mastera a następnie zliczenie na przykład
RMS. Jednakże nie ma wtedy potrzeby analizować sygnału pochodnego gdyż można
wyeksportować nowy sygnał o odgórnie określonych charakterystykach. Oddolne usta-
lenie charakterystyk wymaga usługi działającej na zasadzie MusicBrainz czy CDDB i
wykracza poza zakres tej pracy.

Wynikiem analizy powinny być więc czytelne dla człowieka charakterystyki pozwala-
jące na ocenę która dystrybucja przejawia najwięcej dobrych praktyk zapisu sygnałów
dźwiękowych.

Moim zdaniem najważniejsze wskaźniki to:

1. TPL (ang. True Peak Level) – najwyższa zarejestrowana amplituda,

10

https://musicbrainz.org
https://en.wikipedia.org/wiki/CDDB

2. I-Loudness (I-LUFS) – głośność mierzona w pełnej skali zgodnie z [2],

3. LRA (ang. Loudness RAnge) – zakres głośności,

4. RMS (ang. Root Mean Square) – średnia kwadratowa sygnału.

2.2.1 Przykładowe zastosowanie wskaźników

• Europejska Unia Nadawców rekomenduje [18] aby:

• TPL nie przekraczał −1(±0.3) dB, aby uniknąć clippingu,
• I-LUFS wynosił −23(±1) LUFS, aby zmniejszyć potrzebę normalizacji.

• Zmniejszony zakres głośności może wskazywać użycie kompresora.

• RMS powinno być jak największe przy TPL nie przekraczającym zera.

2.3 Efektywność

Efektywność jest ważna dopiero w dostępnym programie który przeprowadza komplek-
sową analizę. Wydzieliłem trzy typy efektywności które opisuję w poniższych podsek-
cjach.

2.3.1 Ergonomia interfejsu

Interfejs użytkownika, jak przystało na dziedzinę interakcji człowiek-komputer, powi-
nien być ergonomiczny. Wygoda korzystania z interfejsu bezpośrednio przekłada się
na efektywność całego procesu. Interfejs powinien więc być czytelny, zrozumiały i za-
pewniać użyteczne możliwości dostosowania jego działania.

2.3.2 Efektywność analizy

Analiza dźwięku jest złożona obliczeniowo i wymagająca pamięciowo. Ponieważ jest
to główna funkcja programu to właśnie na nią powinien on poświęcać prawie całość
swoich zasobów.

Wskazane jest aby program optymalnie zarządzał zasobami przydzielonymi mu
przez system operacyjny, więc na przykład aby nie miał garbage-collectora i kompi-
lował się do kodu natywnego.

2.3.3 Pomiar efektywności analizy

Aby zmierzyć efektywność analizy przygotowałem serię testów. Są to proste pomiary
czasu analizy sześciu albumów o różnych częstotliwościach i głębokościach próbko-
wania, ale też długościach i ilościach utworów. Spis tych albumów i ich charakterystyk
znajduje się w tabeli 1 a poniżej znajduje się wyjaśnienie oznaczeń w niej użytych:

11

https://en.wikipedia.org/wiki/Clipping_%28signal_processing%29

• SR (ang. Sampling Rate)– częstotliwość próbkowania w Hz,

• BD (ang. Bit Depth) – głębokość bitowa3,

• n – ilość utworów,

• l – długość trwania w sekundach,

• s – całkowity rozmiar plików audio (zmierzony Unixową komendą du --summarize

--human-readable).

Tabela 1: Informacje o albumach wykorzystanych do testowania efektywności analizy

Oznaczenie Album SR [kHz] BD n l [s] s [B]
HYT Hybrid Theory 48 24 12 2270 510M
Ż63 Live Żak 63 48 24 25 4700 906M
MID Made In The Dark 44.1 16 13 3258 352M
PPP Pink Season: The Prophecy 44.1 16 4 915 111M
RAM Random Access Memories 88.2 24 13 4475 1.5G
TTS That’s The Spirit 96 24 11 2703 1G

Testy przeprowadziłem w moim środowisku, czyli:

• OS: Gentoo Linux 2.18 (default/linux/amd64/23.0/desktop);

• jądro: gentoo-kernel-6.12.58,
• flagi kompilacji -O2 -march=native -flto=8,

• CPU: Intel i5-1135g7,

• RAM: Micron 16 GB LPDDR4,

• SSD: Samsung 860 EVO (M.2).

Aby ujednolicić czynnik cieplny, testy zaczynałem po uprzednim rozgrzaniu sprzętu do
temperatury około 80 stopni Celcjusza narzędziem stress.

Szybkość v zdefiniowałem jako stosunek długości albumu do średniego czasu jego
analizy t:

v =
l

t

Przepływność X jest natomiast stosunkiem rozmiaru albumu do czasu jego ana-
lizy t:

X =
s

t

Jest to przydatna metryka ponieważ analizowane przeze mnie albumy są zakodowane
w formacie FLAC z różnym stopniem kompresji.

3ilość bitów poświęcona na zapis amplitudy sygnału

12

https://en.wikipedia.org/wiki/Du_(Unix)

2.3.4 Ergonomia raportów

Program powinien generować raporty w postaci przejrzystych plików których odczyt nie
wymaga specjalistycznego oprogramowania.

13

3 MusicScope

MusicScope (MS) [37] to graficzny program do analizy dźwięku stworzony przez firmę
XiVero. Licencja na jedną instalację kosztowała około 25 Euro.

Oficjalny opis producenta brzmi następująco:

The MusicScope is a high precision software audio analyzer and measuring
tool that works as an Audio-Microscope to visualize the different quality
aspects of a music collection.

Pozwoliłem sobie pogrubić słowo visualize ponieważ moim zdaniem to kluczowa cecha
MS: ma to być program do wizualizacji różnych aspektów dźwięku.

Poza analizą plików dźwiękowych program umożliwia ich odtwarzanie oraz analizę
sygnałów odbieranych z wejścia audio w czasie rzeczywistym. Są one niezależne i w
kontekście analizy albumów duplikują funkcjonalność analizy plików z o wiele gorszą
ergonomią, więc więcej o nich nie wspomnę.

Najstarsza informacja o MS jaką mogłem znaleźć to prezentacja programu opubli-
kowana na serwisie YouTube 28 lutego 2015 roku.

W tej sekcji przeanalizuję i ocenię to oprogramowanie jako narzędzie do analizy
albumów na podstawie moich doświadczeń z Windowsową wersją 2.1.0. Przez parę lat
używałem jej na Windowsie 10, a teraz wyłącznie na potrzeby mojej pracy inżynierskiej,
korzystam z niej na Gentoo Linux [12] przy użyciu Wine [38].

3.1 Dostępność technologiczna

MusicScope napisane jest w czystej Javie – powinno być uruchamialne na każdej plat-
formie obsługiwanej przez HotSpot, więc między innymi Solaris, FreeBSD działające
na ppc64 czy arm. Publikacja producenta działają jednak tylko na MacOSie na archi-
tekturze amd64 i Windowsie na amd64 i x86.

Instalator zawiera JRE z OpenJDK w wersji ósmej i producent nie zapewnia możli-
wości korzystania z innego środowiska.

3.2 Accessibility

Programy graficzne napisane w Javie celem zwiększenia swojej dostępności dla osób
niepełnosprawnych mogą implementować Accessibility API przez javax.accessibility.
MusicScope korzysta z toolkitu Swing który wspiera to API.

Głównym interfejsem MusicScope jest ekran raportu, który jest bitmapą i nie imple-
mentuje Accessibility API. Swing jest wykorzystywany tylko w zakładce opcji programu
i selekcji ścieżek. Tym samym program XiVero nie jest dostępny dla osób z niepełno-
sprawnościami.

14

https://www.northdata.com/XiVero%20GmbH,%20Viersen/

3.3 Dostępność prawna

3.3.1 Uzyskiwanie

Art. 278 Kodeksu Karnego poświęcony jest kradzieży. W przypadku kradzieży nieszcze-
gólnie zuchwałej przewiduje karę pozbawienia wolności od 3 miesięcy do 5 lat. Poniżej
znajduje się cytat z § 2:

Tej samej karze podlega, kto bez zgody osoby uprawnionej uzyskuje cudzy
program komputerowy w celu osiągnięcia korzyści majątkowej.

Kiedy program był sprzedawany zdobycie go nieoficjalnymi drogami dystrybucji było
więc uznawane za przestępstwo.

XiVero zakończyło swoją działalność w 2022 roku i od tego czasu nie ma oficjalnych
źródeł dystrybucji. Czy w takim przypadku uzyskanie tego programu może mieć cel
osiągnięcia korzyści majątkowej? Odpowiedź na to pytanie nie jest oczywista.

3.3.2 Rozpowszechnianie

Art. 116 ustawy o prawie autorskim dotyczy rozpowszechniania utworu bez pozwolenia.
Poniżej znajduje się cytat z § 1:

Kto bez uprawnienia albo wbrew jego warunkom rozpowszechnia cudzy
utwór [. . .], podlega grzywnie, karze ograniczenia wolności albo pozbawie-
nia wolności do lat 2.

MusicScope nie wyszczególnia warunków rozpowszechniania, więc jest traktowany
jako typowe oprogramowanie na własnościowej licencji.

3.4 Kompleksowość analizy

Raport tekstowy MusicScope zawiera informacje o oprogramowaniu generującym ra-
port, czyli jego nazwę i wersję oraz link do strony producenta.

Raportowane informacje o utworach są przechowywane w tabeli i są to:

1. nazwa pliku,

2. format (PCM/DSD),

3. głębokość bitowa (BD),

4. częstotliwość próbkowania (SR),

5. częstotliwość odcięcia, czyli najwyższa zarejestrowana,

6. TPL dla kanałów;

15

• lewego,
• prawego,
• Mid, czyli średnią sumy lewego i prawego,
• Side, czyli średnią różnicy sygnału lewego i prawego,

7. RMS: lewy, prawy, Mid i Side,

8. średni CREST, czyli stosunek TPL do RMS (aCREST),

9. średnie Peak to Loudness Ratio (aPLR),

10. głośność całkowitą (I-LUFS),

11. zakres głośności.

Na samym dole widnieje niejasny4 Total Loudness Range.

3.5 Ergonomia interfejsu

3.5.1 Przedstawienie interfejsu

Interfejs MusicScope przedstawia rysunek 1. Jedyną interaktywną jego częścią jest
pasek na samej górze zawierający następujące przyciski:

1. głośnik – pozwala wyciszyć program podczas analizy plików w czasie rzeczywi-
stym,

2. folder – pozwala wybrać foldery i pliki do analizy,

3. stop,

4. rozpocznij/wznów analizę w czasie rzeczywistym,

5. mikroskop – rozpocznij/wznów szybką analizę,

6. ustawienia,

7. informacje.

Kliknięcie w pole gdzie później wyświetlana jest nazwa analizowanego pliku otwiera
okno zarządzania playlistą5. To właśnie tam przy każdym uruchomieniu programu
należy zaznaczyć Folder / Album Report jeśli chcemy otrzymać raport tekstowy.

4W przypadku mojej kopii albumu blink182 z 2003 roku MusicScope raportuje 7.8 dB. Zkonkateno-
wałem i przeanalizowałem te pliki sd2. Zaraportował on LRA na poziomie 10.69 dB. Nie wiem jak tę
wartość kalkuluje program XiVero.

5Tekst następujący po No track loaded – jest za długi aby zmieścić się z przeznaczonym na niego
miejscu więc wypycha Ustawienia i Informacje poza normalną ramę okna. Widać to wyraźnie przy po-
równaniu rysunku 1 do dowolnego zrzutu ekranu oprogramowania z załadowanym utworem.

16

Rysunek 1: Interfejs MusicScope świeżo po uruchomieniu

17

Zrzut ekranu okna pojawiającego się po kliknięciu w przycisk Informacje przedsta-
wia rysunek 2. Tam kliknięcie w Software License otwiera nowe okno z informacjami
o licencjach wolnościowych bibliotek z których korzysta projekt, czyli: dekodery ALAC,
FLAC i MP3 licencjonowane pod BSD-3 i jaudiotagger pod LGPL6.

Po kliknięciu w Ustawienia otwiera się okno z zakładkami. Pod względem generowa-
nia raportów tekstowych jedyna użyteczna zakładka to System. Można tam suwakami
ustawić priorytet wątków i prędkość analizy, kolejno na 11 i 6 poziomów. Domyślnie są
one ustawione na maksymalny priorytet i prędkość.

Aby przeanalizować utwór należy oknem wyboru plików wskazać go w systemie
plików i rozpocząć analizę Mikroskopem. Głównym wynikiem analizy będzie raport
graficzny, który jest praktycznie zapisem interfejsu po zakończonej analizie. Taki stan
przedstawia rysunek 3.

Po zakończonej analizie albumu program pozostaje w stanie identycznym do tego
jak gdyby analizował ostatni utwór; nie komunikuje osiągnięcia celu w żaden sposób.

3.5.2 Przedstawienie użytkowania

MusicScope jest w stanie wygenerować jeden raport na jeden zbiór plików zakolejko-
wanych do analizy co drastycznie wydłuża czas analizy wielu albumów. Aby lepiej to
zilustrować sporządziłem diagram stanów przedstawiający workflow użytkownika. Jest
to rysunek 4.

Przeanalizowanie pojedynczego albumu wymaga więc ośmiu akcji:

1. wywołanie programu,

2. klikniecie folderu,

3. wybór celów analizy,

4. otworzenie okna kolejki,

5. wybranie raportu tekstowego,

6. zamknięcie okna kolejki,

7. rozpoczęcie analizy,

8. zamknięcie programu.

Wybranie raportu tekstowego nie jest zerowane przy wyczyszczeniu kolejki więc może
być wybrane raz na uruchomianie programu.

6Jest to niezgodne z prawdą. Jaudiotagger w wersji 2.2.6, czyli tej w której jest wykorzystywany w
MusicScope, jest licencjonowany pod warunkami LGPL-2.1-or-later, a nie LGPL-2.0*. XiVero złamało
warunki licencji tej biblioteki więc ich program nie powstał legalnie.

18

Rysunek 2: Okno About MusicScope

Rysunek 3: Raport graficzny MusicScope utworu Soma

19

Główna pętla

Wywołanie
programu

Czekanie na wybór
celu analizy

Kliknięcie
Folderu

Nawigacja
systemu plików Wybór celu/

celów analizy

Czekanie na
rozpoczęcie analizy

Otworzenie
okna kolejki

Czekanie na zmianę kolejności
i ustawień analizy

Zamknięcie
okna kolejki

Raport graficzny
ostatniego utworu

Analiza

Zamknięcie
programu

Otworzenie
okna kolejki

Czekanie na zmianę kolejności
i ustawień analizy

Zamknięcie
okna kolejki

Wyczyszczenie kolejki

Wybranie raportu tekstowego

Rysunek 4: Diagram stanów MusicScope z perspektywy użytkownika

20

Przy analizie większej ilości albumów użytkownik pozostaje w ramach stanów, które
określiłem pętlą główną do momentu zamknięcia programu.

3.5.3 Ocena

Interfejs MusicScope być może wygląda imponująco na pierwszy rzut oka, jednak już
po krótkim obcowaniu z programem łatwo zauważalne są jego znaczące wady.

Po pierwsze, brak responsywności. Użytkownicy są przyzwyczajeni do tego, że jeśli
ich wskaźnik myszy najedzie na element, który nie wiedzą czy można kliknąć to ten
element zmieni swój stan pokazując tym samym możliwość interakcji. W MusicScope
żaden interaktywny element interfejsu nie jest responsywny.

Po drugie, aby program tworzył raport tekstowy przy każdym jego wywołaniu należy
zaznaczyć tę opcję.

Po trzecie, co najważniejsze, brak obsługi kolejkowania wielu folderów. Oznacza to,
że użytkownik chcący przeanalizować n albumów musi n razy przejść przez żmudną
pętlę główną interakcji.

Po czwarte, brak obsługi folderów jako cele. Chcąc przeanalizować wszystkie pliki w
folderze, należy przy użyciu okna dialogowego Swing wybrać wszystkie pliki z albumu.
Jest to tym bardziej uciążliwe im więcej utworów ma wydawnictwo i im więcej plików
niedźwiękowych (np. okładka, log ripowania) znajduje się w folderze.

3.6 Efektywność analizy

MusicScope jest programem napisanym w czystej Javie z interfejsem będącym bit-
mapą. Interfejs ten jest aktualizowany wiele razy na sekundę.

Wykonałem na MusicScope testy opisane w sekcji 2.3.3. Czas mierzyłem ręcznie
stoperem cyfrowym i wyniki zaokrąglałem do jedności. Wyniki pomiarów przedstawia
tabela 2.

Obserwacje dotyczące procesu analizy:

1. co prawda jest on wielowątkowy jednak najwyższe zużycie procesora jakie zaob-
serwowałem nie przekraczało 65%,

2. w wyniku niezrozumiałego dla mnie błędu przy analizowaniu tych samych albu-
mów ponownie szybkość analizy spadała drastycznie więc musiałem zamykać
program aby pozbyć się tego efektu,

3. błąd opisany w poprzednim punkcie występował również przy analizie innych al-
bumów, więc każda analiza oznaczała nowe wywołanie programu.

Zdziwił mnie fakt, że MusicScope analizuje sygnały o różnych przepływnościach z
bardzo zbliżoną szybkością. Aby potwierdzić czy na pewno tak jest przeanalizowałem
następujący plik:

21

Tabela 2: Zestawienie szybkości analizy MusicScope wybranych albumów

Album t1 [s] t2 [s] t3 [s] tśr [s] v X [MBps]
HYT 226 225 225 225.(3) 10.1 2.3
Ż63 454 454 453 453.(6) 10.4 2.0
MID 313 316 314 315.(3) 10.3 1.1
PPP 86 90 86 87.(3) 10.5 1.3
RAM 419 420 418 419 10.7 3.6
TTS 258 257 258 257.(3) 10.6 3.5

• SR: 410 Hz,

• BD: 8,

• długość: 90s,

• zawartość: sinusoida o częstotliwości 100 Hz.

Wtedy okazało się, że MusicScope nie obsługuje plików o niestandardowych charak-
terystykach; program nie zakolejkowywuje pliku i nie komunikuje dlaczego, ani nawet,
że tego nie zrobił. Po zmianie SR i BD na RedBookowe dowiedziałem się, że plik w
formatach zarówno RIFF WAV jak i FLAC jest analizowany w około 9 sekund.

Wykonane przeze mnie pomiary udowadniają, że szybkość analizy7 MusicScope
nie zależy od przepływności pliku a od czasu jego trwania i jest ona równa około 10.

3.7 Ergonomia raportów

3.7.1 Podświetlanie składni

Raporty tekstowe MusicScope to pliki o nazwie MusicScope-Report.txt. To najprost-
sze pliki tekstowe których przytłaczająca większość oprogramowania nie będzie nawet
próbowała interpretować, a więc również podświetlać składni.

Ponadto składnia zapisu tabel jest niestandardowa, więc nawet ręczne włączenie
podświetlenia nie polepszy czytelności raportu.

3.7.2 Szerokość tabeli

Tabela w pliku tekstowym będzie czytelna tylko jeśli nie będzie przekraczała szerokości
wyświetlanych linii lub jeśli tekst może wykraczać poza wyświetlany obszar, jak komórki
w arkuszu kalkulacyjnym. Nie jest to jednak typowe zachowanie i nie powinno się na
nim polegać.

Tabela z charakterystykami dźwięku ma szerokość 223 znaków.
7zdefiniowana w sekcji 2.3.3

22

Jest to niespotykanie szeroka tabela która bardzo rzadko będzie mogła być odczytana
bez zmniejszenia rozmiaru wyświetlanego fontu. Dla porównania poniżej wymieniłem
najdłuższe akceptowalne długości linijek8 plików tekstowych w różnych konwencjach:

• 80: klasyczny dalekopis (TTY), Linux C, Haskell, Perl, Go, Ruby, Java. . .

• 100: Zig i Rust

• 120: C#

• 140: Gentoo ebuild (zawiera URLe)

Ponadto kolumna Track przechowująca nazwę pliku ma stałą szerokość 33 znaków,
niezależnie od długości nazw plików.

3.7.3 Ekscesywna ilość raportowanych danych

Uważam, że wypisywanie charakterystyk Mid jest niepotrzebne: użytkownik samodziel-
nie jest w stanie obliczyć tą wartość. Jeśli zależy nam na podaniu tej wartości to można
pominąć oddzielne informacje na temat kanałów.

Poddaję w wątpliwość również zasadność zapisywania charakterystyk Side; jest to
ciekawa acz mało przydatna charakterystyka.

3.8 Podsumowanie

MusicScope jest programem niedostępnym, ponieważ:

• dostępność technologiczna jest ograniczona,

• dostępność dla osób z niepełnosprawnościami jest bliska zeru,

• dostępność prawna jest bardzo niska:

• rozpowszechnianie jest nielegalne,
• legalność uzyskania nie jest pewna.

MusicScope analizuje o wiele więcej charakterystyk dźwięku niż jest zapisywanych
w raporcie tekstowym. Tam dużo uwagi poświęcone jest na TPL i RMS: oddzielnie
raportowane są informacje na kanał oraz ich sumę i różnicę.

Interfejs MusicScope jest nietypowy i niewspółczesny, a korzystanie z niego nie-
wygodne i niesatysfakcjonujące. Został on zaprojektowany pod analizę pojedynczych
albumów więc przy większych ilościach użytkownik zmuszony jest wielokrotne powta-
rzać te same czynności co jest nieefektywne i niepotrzebnie męczące.

MusicScope analizuje pliki o różnej przepływności w czasie niewiele mniejszym niż
jedna dziesiąta ich trwania.

8Maksymalna szerokość tabeli jest równoważna z maksymalną szerokością linii w danej konwencji.

23

Raporty MusicScope są okropne do czytania; tabela jest zdecydowanie za szeroka
a separatorami nienagłówkowych kolumn są po prostu spacje. Pliki to zwykły tekst bez
prób zastosowania jakiegokolwiek markupu.

4 Próba pierwsza: SINMS

W 2024 roku postanowiłem zrobić tak zwany rewrite from scratch funkcjonalności Mu-
sicScope służącej do generowania raportów. Pierwszą próbę nazwałem SINMS, czyli
SINMS Is Not MusicScope nawiązując do starej hakerskiej tradycji rekursywnych akro-
nimów.

W tym rozdziale opiszę najważniejsze decyzje projektowe podjęte przeze mnie pod-
czas pracy nad SINMS oraz zaprezentuję jego wydajność i stan obecny.

4.1 Interfejs użytkownika

4.1.1 Usunięcie zbędnych elementów GUI

Jeśli użytkownikowi zależy tylko na raportach tekstowych, więc jeśli analizuje on al-
bumy, to interfejs MusicScope ogranicza się do:

• folderu,

• nazwy pliku / kolejki,

• mikroskopu.

Reszta przycisków jest zbędna.
Te elementy interfejsu przekładają się na raport tekstowy:

1. Format:

• głębokość bitowa,
• częstotliwość próbkowania.

2. Poziomy:

• TPL,
• RMS,
• CREST,
• PLR,
• I-LUFS,
• LRA.

3. Wykres amplitud częstotliwości.

24

https://en.wikipedia.org/wiki/Recursive_acronym#Use_in_computing
https://en.wikipedia.org/wiki/Recursive_acronym#Use_in_computing

Wykres jest jednak nieefektywny: z perspektywy raportu potrzebuje on przechowywać
tylko jedną najwyższą częstotliwość podczas gdy przechowuje on wartość amplitudy
dla wszystkich możliwych.

Oznacza to, że zupełnie zbędne są:

1. spektrogram,

2. wizualizacja korelacji,

3. wykres kołowy z poziomami,

4. wykres pionowy z poziomem S-Mode,

5. część wykresu poziomego opisująca S-Mode i M-Mode.

Usunięcie ich zmniejszy ilość wymaganych obliczeń i przyspieszy działanie programu.

4.1.2 Zmiana celu interfejsu analizy

W MusicScope celem interfejsu jest wyświetlanie analizowanych charakterystyk w cza-
sie rzeczywistym. W przypadku analizy albumów jest to bezużyteczne ponieważ rapor-
towany jest stan wskaźników na koniec analizy.

Dokładna interpretacja interfejsu podczas analizy wymaga jej zatrzymania, co jest
nieakceptowalne jeśli użytkownikowi zależy na jej efektywności.

Próby pobieżnej interpretacji charakterystyk w trakcie analizy będą mało miarodajne
ze względu na ich ciągłą zmienność. Nawet jeśli użytkownik skupi się na parametrach
które na pewno się nie zmienią, na przykład na wykresie kołowym poziomów początku
utworu, nie będzie on miał czasu na interpretację ponieważ analiza utworu wkrótce
dobiegnie końca.

Interfejs analizy moim zdaniem powinien co najwyżej powiadamiać użytkownika o
jej postępach. Uważam też, że zatrzymanie interfejsu na czas analizy jest akceptowalne
a nawet wskazane jeśli użytkownikowi zależy na maksymalizacji efektywności.

4.1.3 Interfejs linii komend (CLI)

Zmiana interfejsu graficznego na ten linii komend znacząco zmniejsza skomplikowanie
programu, co w konsekwencji przyspiesza jego działanie.

Korzystanie z programu mogłoby więc wyglądać tak jak na listingu 1.

4.1.4 Deklaratywność

Imperatywne programy CLI, zwane też dialogowymi, są przydatne gdy program ma
dużo funkcjonalności. Dobrym przykładem będzie fdisk z util-linux, którego funk-
cjonalna część strony man ma około trzysta linijek. W przypadku prostszych narzędzi

25

$ sinms
Press h to see the list of available commands
> h
cd PATH -- change directory to PATH
a PATH -- start analysis. If no PATH provided uses current directory
q -- quit
> cd Music/Angels_and_Airwaves
> a Chasing_Shadows
Analysed Overload.flac
Analysed Artillery.flac
Analysed Voyager.flac
Analysed Chasing_Shadows.flac
Text report saved!
> q
$ file Music/Angels_and_Airwaves/Chasing_Shadows/report.txt
report.txt: ASCII text

Listing 1: Mockup wykorzystania imperatywnego interfeju linii komend sinms

lepiej sprawdza się interfejs deklaratywny który zbiera wszystkie informacje od użytkow-
nika przed wywołaniem programu. Przykładem takiego narzędzie będzie na przykład
touch z GNU Coreutils, którego funkcjonalna część strony man ma zaledwie 70 linijek.

Zastosowanie deklaratywnego interfejsu oznacza też, że z perspektywy użytkow-
nika program staje się bezstanowy. Użytkownik wywołuje oprogramowanie zapewnia-
jąc mu wszystkie informacje wymagane do działania, a program wykonuje swoje akcje
i wyłącza się. Znacząco zwiększa to ergonomię pracy z narzędziem zwiększając wy-
godę i efektywność.

Dodatkową zaletą jest łatwa skryptowalność zadania: wywołanie programu z po-
ziomu skryptu powłoki niczym nie różni się wtedy od wywołania go przez użytkownika.

4.1.5 Podsumowanie

Interfejs użytkownika SINMS implementuje cztery zmiany, które wymieniłem w poprzed-
nich sekcjach. Listing 2 przedstawia przykładowe wykorzystanie tego interfejsu w jego
najnowszej wersji9.

4.2 Język programowania i biblioteki

Zależało mi na maksymalnej efektywności mojego programu więc wybrałem najbar-
dziej efektywny znany mi język: C, a konkretnie standard 2x, który okazał się być stan-
dardem C23 [14].

9Więcej detali zawiera sekcja 4.5.

26

$ sinms --help
Usage: sinms [OPTION]... [TARGET]...
Analyzes audio in TARGET(s)

-e, --explain-headers include explanation of header-meanings in reports
-p, --print instead of reporting to file, print output
-r, --recursive analyze all folders within a folder
-s, --silent suppress all output
-v, --verbose explain what is being done
-l, --lazy do not analyze a folder if has a report present

--help display this help and exit
--version output version information and exit

TARGET(s) can be either files or directories
$ sinms -v Music/Angels_and_Airwaves/Chasing_Shadows/
INFO: File "01_Overload.flac" analyzed
INFO: File "02_Artillery.flac" analyzed
INFO: File "03_Voyager.flac" analyzed
INFO: File "04_Chasing_Shadows.flac" analyzed
INFO: A report was generated to "Music/Angels_and_Airwaves/Chasing_Shadows/"
$ file Music/Angels_and_Airwaves/Chasing_Shadows/report.org
report.org: ASCII text

Listing 2: Przykładowe wykorzystanie SINMS

Wiedziałem, że szybkie programy których używam na co dzień takie jak PipeWire
[26] czy MPD [22] wykorzystują bibliotekę sndfile [6] do odczytywania plików audio więc
postanowiłem z niej skorzystać.

Podczas testowania prototypów SINMS zauważyłem, że amplituda nigdy nie prze-
kraczała wartości 1 (0 dB), nawet jeśli MusicScope mówiło inaczej. Dowiedziałem się
wtedy o Inter-Sample Peaks i zacząłem korzystać z biblioteki ebur128 [17], która im-
plementuje Rekomendację 128 Europejskiej Unii Nadawców [18] wykorzystujący wspo-
mniany wcześniej standard ITU [2]. Tym samym moje oprogramowanie jest również
zgodne z dokumentami EBU Tech 3341 i EBU Tech 3342 ponieważ to właśnie ta bi-
blioteka liczy większość charakterystyk dźwięku.

Początkowo planowałem aby SINMS mógł działać również na Windowsie jednak
oznaczałoby to na przykład rezygnację z korzystania z POSIXowego getopt.h. Stwier-
dziłem, że nie zależy mi na tym na tyle, aby trudzić się szukaniem rozwiązania tego
problemu. Później okazało się, że na Windowsie nie ma również dirent.h. Utwierdziło
mnie to w przekonaniu, że SINMS nie będzie wspierało systemów niePOSIXowych.

4.3 Raportowanie

W SINMS postanowiłem również naprawić problemy z ergonomią raportów które opi-
sałem w sekcji 3.7.

27

https://www.masteryourtrack.com/post/inter-sample-peak-explained
https://tech.ebu.ch/docs/tech/tech3341.pdf
https://tech.ebu.ch/docs/tech/tech3342.pdf

Przede wszystkim postanowiłem wykorzystać język markupu tekstu. Wybierałem
między CommonMark [20] a Emacsowym org-mode; obydwa to lekkie języki które są
używane od ponad 20 lat. Zdecydowałem się wybrać ten drugi ze względu na wbu-
dowaną obsługę metadanych która polepszy czytelność pliku. Zmniejszyłem również
szerokość tabeli z 223 do 107 znaków tym samym zapewniając jego zgodność z wy-
tycznymi dla języka C#. Inną ważną zmianą było usunięcie charakterystyk Mid i Side,
w powodów opisanych we wcześniej wspomnianym rozdziale.

4.4 Efektywność działania

SINMS to program napisany w czystym C. Wykorzystywane przez niego biblioteki zo-
stały skompilowane zgodnie z systemowymi CFLAGS, a sam plik wykonywalny z pozio-
mem -03.

Mierzyłem efektywność programu przypisanego do konkretnej jednostki procesują-
cej przy użyciu taskset i time. Wyniki pomiarów przedstawia tabela 3

Ponieważ SINMS jest jednowątkowe, zajmowało tylko jeden rdzeń logiczny mojego
procesora; maksymalne obciążenie systemu wynosi więc 12,5%.

Tabela 3: Zestawienie szybkości analizy SINMS wybranych albumów

Album t1 [s] t2 [s] t3 [s] tśr [s] v X [MBps]
HYT 27.48 28.12 28.72 28.11 81 18.14
Ż63 58.73 58.69 60.80 59.41 79 15.25
MID 40.67 40.69 40.11 40.49 80 8.69
PPP 9.25 8.91 8.71 8.96 102 12.39
RAM 99.95 97.67 100.13 99.25 45 15.11
TTS 49.85 48.94 48.41 49.07 55 20.38

Zdziwiła mnie rozbieżność v więc powtórzyłem analizę trzech ostatnich albumów
ponownie otrzymując podobne czasy.

Różne czasy analizy plików są dowodem tego, że wąskim gardłem MusicScope było
aktualizowanie interfejsu; dopiero po usunięciu go zauważalne były różnice w plikach.

SINMS wykorzystując ćwierć czasu obliczeniowego CPU zużywanego przez Music-
Scope jest od niego od czterech do dziesięciu razy szybsze.

4.5 Status quo SINMS

SINMS osiągnęło pełną funkcjonalność pod koniec lipca 2024 roku. Od tego czasu
korzystałem z niego zamiast z MusicScope ponieważ już wtedy uznałem moje starania
za udane. Mój program był o wiele wygodniejszy i o wiele szybszy oraz generował
lepsze raporty.

Ostatnią poprawkę wcieliłem do repozytorium szóstego sierpnia 2024 roku i od tego
czasu kod programu pozostał bez zmian.

28

https://orgmode.org/manual/Markup-for-Rich-Contents.html

Wiedziałem, że następnym krokiem rozwoju aplikacji będzie wielowątkowość. Do-
wiedziałem się, że najlepiej będzie abym zaimplementował ją przy użyciu POSIXowej
biblioteki pthread.h która nie doda zależności mojemu programowi. Działa ona jednak
na stosunkowo niskim poziomie co zniechęciło mnie, szczególnie ponieważ na potrzeby
SINMS napisałem już tysiące linijek kodu C.

Rozważałem jeszcze zastosowanie OpenMP [24] jednak poza wprowadzaniem do-
datkowej zależności opiera się ono na preprocesorze. Preprocesor został dodany do
języka C rok po jego pierwszym wydaniu [32] jako próba obejścia istotnych ograniczeń
samego języka. Jedną z funkcjonalności, którą umożliwił były makra. Pozwalają one
na wiele, ale:

1. ciężko się je debuguje,

2. nie są typowane,

3. często mają (nieoczekiwane) efekty uboczne.

Kiedy programuję w C staram się więc unikać makr jeśli jest to możliwe.

4.6 Haskellowe SINMS

Haskell to czysto funkcjonalny (purely functional) język programowania, więc nie ma w
nim efektów ubocznych.

O SIMNS można myśleć jak o funkcji: przyjmuje ona na wejściu cele i flagi (opcje) a
zwraca przeanalizowane dane. Ponieważ chciałem nauczyć się funkcjonalnego języka
programowania pomyślałem, że przepisanie mojego programu do tego języka będzie
ciekawym i rozwojowym wyzwaniem.

Udało mi się zintegrować libsndfile za sprawą biblioteki zapewniającej Haskel-
lowe powiązania. Niestety dla libebur128 nikt nie napisał jeszcze tych powiązań. Pi-
sanie takich powiązań bez znajomości języka to bardzo czasochłonne i wymagające
stwierdziłem, że Haskell nie jest odpowiednim językiem programowania dla mojego
projektu.

5 Próba druga: sd2

Największym problemem SIMNS był dla mnie brak wielowątkowości i fakt, że nie chcia-
łem jej implementować w C. Głównym celem sd2 było więc przepisanie SINMS w ję-
zyku programowania systemowego, który wspiera wielowątkowość na poziomie swojej
biblioteki standardowej. Nie potrafię programować w żadnym języku który spełnia te
wymagania, więc personalnie oznaczało to nauczenie się zupełnie mi obcego języka
programowania.

29

5.1 Język programowania i biblioteki

Zależało mi na tym aby skorzystać z tych samych bibliotek, które wykorzystałem w
SINMS. Pozostawiło mi to wybór trzech języków programowania: C++, Rusta i Ziga.
C++ w oczywisty sposób wspiera biblioteki C, Zig robi to na niemalże równie wysokim
poziomie a Rust ma powiązania do libsndfile i swój odpowiednik libebur128.

5.1.1 C++

Od publikacji standardu C++11 język ten obsługuje współbieżność na poziomie biblio-
teki standardowej i z oczywistych powodów jest w dużym stopniu kompatybilny z C.

Prace nad językiem znanym dzisiaj jako C++ rozpoczęły się w 1979. Wtedy nazy-
wany był jeszcze "C z klasami", co pokazuje jakimi wartościami kierował się Bjarne Stro-
ustrup przy jego tworzeniu. Obiektowość znacząco komplikuje język programowania i
nie jest potrzebna w moim programie więc wolałem jej uniknąć. Ponadto nie chciałem
korzystać z języka programowania który ma ponad czterdzieści lat i dalej ma problemy
C. Pomijając wspomniany wcześniej procesor nadal budowa nietrywialnych projektów
wymaga dodatkowego oprogramowania z własną składnią itd. (GNU autotools, Meson,
CMake, Bazel, Waf. . .).

Bardzo zaintrygował mnie cytat który znalazłem w internecie szukając informacji na
ten temat [15]:

C++: jest pełen błędów, jest nieefektywny, jest niekompletny, jest bloated,
kompiluje się o rząd wielkości dłużej niż C, offloaduje połowę implementacji
języka do konsolidatorów czego konsekwencją są enigmatyczne i niemoż-
liwe do rozwiązania problemy pojawiające się tak późno w procesie tworze-
nia oprogramowania, że chce się implementować lovecraftowskie obejścia
problemu niszcząc swoją poczytalność do momentu w którym korzystanie
z pomocy Sanapii zdaje się być normalne. . . Ponadto fiasko kolejności sta-
tycznej inicjalizacji wydaje się być bardziej funkcjonalnością niż błędem. Nie
ma stabilnego ABI lecz jego użytkownicy błędnie wierzą, że jest inaczej. C++
wstydzi się danych zamiast wstydzić się własnej implementacji wyjątków.

Zgłębiłem temat i przekonałem się, że te zarzuty zdecydowanie nie są bezpod-
stawne. Wtedy podjąłem decyzję, że nie skorzystam z tego języka programowania.

5.1.2 Rust

Rust powstał w 2006 roku a wydanie 1.0.0 miało miejsce w 2015 roku. Nie jest on
obiektowy i nie wykorzystuje garbage-collectora co również mi się podoba. Jedną z
najważniejszych cech Rusta jest bogaty system typów który ma zapewnić bezpieczeń-
stwo na poziomie wątków i pamięci (thead-safety i memory-safety).

30

Ciężko mi było nie słyszeć o Ruście ze względu na rewrite’y klasycznych narzędzi
jak cat [25] sudo [35] czy nawet całego coreutils [13]. Poza tym byłem świadomy
efektywności narzędzi takich jak ruff [3], paru [19] i alacritty [1] a nawet zawarcie
go w jądrze Linux10!

Kanał No Boilerplate Trisa Oatena na YouTube był kolejnym i chyba najbardziej
wpływowym źródłem informacji na ten temat11. Po moich niedawnych doświadczeniach
z Haskellem funkcjonalne elementy Rusta zachęcały mnie jeszcze bardziej. Menedżer
paczek i system budowy cargo również mi się podobał: nie musiałem uczyć się kolej-
nego języka, aby móc skompilować swoje oprogramowanie.

Z drugiej strony Rust korzysta jednak z makr, tak samo jak pięćdziesięcioletnie C. . .
Są one oczywiście o wiele lepsze, ale dalej są to makra.

Nie byłem również przekonany, czy bezpieczeństwo pamięciowe jest dla mnie tak
ważne. Oczywiście pisząc SINMS tworzyłem tego typu błędy; przy pierwszym segmentation

fault nawet celebrowałem to doświadczenie, tak integralne dla programowania w C.
Błędy te nie są jednak krytyczne dla mojego programu więc może lepiej byłoby gdybym
wybrał język programowania, którego główny cel jest dla mnie bardziej znaczący?

Rust zdecydowanie jest dobrym wyborem do napisania aplikacji do analizy albumów
jednak nie byłem pewien czy jest on doskonałym wyborem dla mnie.

5.1.3 Zig

Zig po raz pierwszy pojawił się w 2016 roku i jeszcze nie miał swojej wersji 1.0.0.
Podobnie jak Rust nie jest obiektowy i nie wykorzystuje garbage-collectora, jednak w
przeciwieństwie do Rusta pamięcią trzeba zarządzać ręcznie.

O Zigu po raz pierwszy usłyszałem w ramach prezentacji Zig w 100 sekund od
Fireship jeszcze w 2023 roku. Wtedy postrzegałem Ziga jako C bez preprocesora, bez
ukrytego przepływu sterowania ale z defer.

Przypomniałem sobie o Zigu w marcu 2025 roku niedługo po wydaniu wersji 0.14.
W międzyczasie widziałem w internecie następujące zdanie:

Jeśli Rust jest ulepszeniem dla użytkowników C++, Zig jest ulepszeniem dla
użytkowników C.

Po sprawdzeniu, że biblioteka standardowa obsługuje wielowątkowość postanowiłem,
że spróbuję zrobić w nim minimalny prototyp (Proof of Concept) celem stwierdzenia,
czy jest sens zmiany języka programowania.

Zig mi się spodobał więc postanowiłem zreimplementować cały swój program w
tym właśnie języku programowania.

Podczas pracy poznałem więcej zalet Ziga które wymienię w następnym rozdziale
10https://lore.kernel.org/lkml/202210010816.1317F2C@keescook/
11Największe wrażenie wywarł na mnie film Rust: Your code can be PERFECT.

31

https://www.youtube.com/@NoBoilerplate
https://www.youtube.com/watch?v=kxT8-C1vmd4
https://www.youtube.com/watch?v=kxT8-C1vmd4
https://lore.kernel.org/lkml/202210010816.1317F2C@keescook/
https://www.youtube.com/watch?v=Q3AhzHq8ogs

5.2 Zalety Ziga

Zig został stworzony jako próba naprawienia największych problemów języka C bez
dodawania wielu funkcjonalności [16].

5.2.1 Pełna kompatybilność z C

Używanie bibliotek C w Zigu jest niemalże tak proste jak używanie ich w samym C –
wystarczy zaimportować je z użyciem @cImport i @cInclude.

Największą wadą korzystania z bibliotek C jest fakt, że zazwyczaj prefiksują swoje
publiczne funkcje i zmienne, co odrobinę zmniejsza czytelność kodu Ziga.

Na listingu 3 zamieściłem fragment kodu mojego programu odpowiadający za obli-
czenie TPL. Importuję tam ebur128.h i umożliwiam bezpośrednie odwoływanie się do
jego symboli przez prefix r128. Aby poprawić czytelność kodu zdefiniowałem również
stałą r_ok.

const r128 = @cImport(@cInclude("ebur128.h"));
const r_ok = r128.EBUR128_SUCCESS;
...
var state: ?*r128.ebur128_state = undefined;
var tmp_double: f64 = undefined;

state = r128.ebur128_init(
bi.getChannels(),
bi.samplerate,
r128.EBUR128_MODE_TRUE_PEAK

);
defer r128.ebur128_destroy(&state);

if (r128.ebur128_add_frames_float(state, bi.samples.ptr, bi.frames) != r_ok)
log.err("Allocating frames went wrong", .{});

const calc_rval: i32 = r128.ebur128_true_peak(state, i, &tmp_double);
if (calc_rval != r_ok)

log.err("TPL Calculations went wrong (r128 code {d})", .{calc_rval});

Listing 3: Fragment track_info.zig ukazujący użycie biblioteki C ebur128

5.2.2 Koncept comptime

Jedną z najpotężniejszych cech Ziga jest możliwość wykonywania kodu w czasie kompi-
lacji. Jest to możliwe ze względu na to, że kompilator traktuje wszystko co interpretuje
jako wyrażenie. Pozwala to między innymi na pozbycie się makr z pełnym zachowa-
niem jego funkcjonalności. Dalej w tym rozdziale zaprezentuje te przypadki użycia na

32

przykładach z prawdziwego życia.

1. Operowanie na stałych

Chciałem aby w moim oprogramowaniu można było sprawdzić wersje zarówno
przez stringa jak i za pomocą liczb całkowitych, podobnie jak można to zrobić w
Pythonie przy pomocy sys.version i sys.version_info.

W Zigu po prostu definiuję stałe liczby całkowite i korzystam z funkcji biblioteki
standardowej std.fmt.comptimePrint aby w czasie kompilacji stworzyć stringa,
co pokazuje listing 4.

pub const major = 1;
pub const minor = 2;
pub const patch = 3;

pub const full comptimePrint("{}.{}.{}", .{ major, minor, patch });

Listing 4: Deklarowane wersji w Zigu

W czystym C można tylko zdefiniować oddzielnie liczby całkowite i string lecz jest
to niepotrzebnie uciążliwe do zmiany.

Aby aktualizacja wersji nie była uciążliwa możemy więc skorzystać z preproce-
sora, na przykład jak pokazuję na listingu 5. Kosztem tej wygody jest wprowadze-
nie praktycznie drugiego języka programowania i przyrost objętości kodu o 150%!

define MAJOR 1
define MINOR 2
define PATCH 3
const int VERSION_MAJOR = MAJOR;
const int VERSION_MINOR = MINOR;
const int VERSION_PATCH = PATCH;

define STR_HELPER(x) #x
define STR(x) STR_HELPER(x)
define VERSION_STRING STR(MAJOR) "." STR(MINOR) "." STR(PATCH)
const char* VERSION_STR = VERSION_STRING;

Listing 5: Deklarowanie wersji w C

Ponieważ działanie z preprocesorem jest nieintuicyjne można zaprząc do tego
system budowy. Tak proste zadanie moim zdaniem nie powinno wymagać wyko-
rzystania tak złożonego oprogramowania.

2. Programowanie generyczne

33

W sd2 korzystam z biblioteki C ebur128 i tam funkcja add_frames jest tworzona
w czasie kompilacji dzięki programowaniu generycznemu. Osiąga to nieczytelne
i nieprzyjazne dla IDE makro, które przedstawia listing 6 podczas gdy Zig robi to
idiomatycznie, estetycznie i zrozumiale, co widać na listingu 7.

define EBUR128_ADD_FRAMES(type) \
int ebur128_add_frames_##type(\

ebur128_state* st, \
const type* src, \
size_t frames \

) { \
size_t src_index = 0; \
unsigned int c = 0; \
for (c = 0; c < st->channels; c++) { \

st->d->prev_sample_peak[c] = 0.0; \
...

Listing 6: Generyczna funkcja add_frames z ebur128.c

fn add_frames(
comptime T: type,
st: *state,
src: const T*,
frames: usize

)

Listing 7: Generyczna deklaracja funkcji add_frames w Zigu

5.2.3 Instrukcje defer i errdefer

Te dwie funkcjonalności są inspirowane funkcjonalnością języka Go [16]. Pozwalają one
na wykonanie pewnej procedury z końcem zasięgu widoczności (ang. scope) bloku w
które została zadeklarowana. errdefer wywołuje swoją procedurę gdy poprzedzające
go try nie powiedzie się.

Moim zdaniem znacząco ułatwiają one realizowanie procedur, które mają określony
początek i koniec, jak na przykład zarządzanie pamięcią. Jest to szczególnie ważne
co pokazuje pseudokod C i Ziga na listingach 8 i 9 które mają obliczyć i wypisać RMS
danego pliku. Im bardziej skomplikowane są owe procedury tym większy jest zysk.

5.2.4 Przenośność

W sekcji 5.1 wspomniałem, że pierwotnie miałem zamiar aby moje oprogramowanie
działało również na Windowsie. Zależało mi również na tym, aby wspierał platformy
RISC-V i ARM64 ze względu na ich rosnącą popularność w urządzeniach konsumenc-
kich.

34

https://github.com/jiixyj/libebur128/blob/67b33abe1558160ed76ada1322329b0e9e058b02/ebur128/ebur128.c#L977
https://go.dev
https://riscv.org
https://en.wikipedia.org/wiki/AArch64

infile = sf_open(file_path);
buffer = malloc();
if (buffer == NULL) {

// obsługa błędu
sf_close(file_path);

}
sf_readf(infile, buffer);
if (infile == NULL) {

// obsługa błędu
free(buffer);
sf_close(file_path);

}
// wyliczenie i wyświetlenie RMS
free(buffer);
sf_close(file_path);

Listing 8: Pseudokod C: kalkulacja i wyświetlenie RMS

infile = sf_open(file_path);
defer sf_close(file_path);

const buffer = try alloc(<rozmiar>);
defer free(buffer);

try sf_readf(infile, buffer);
errdefer free(buffer);
// wyliczenie i wyświetlenie RMS

Listing 9: Pseudokod Ziga: kalkulacja i wyświetlenie RMS

35

Kod Ziga jest w pełni przenośny między systemami operacyjnymi i architekturami.
Poziom przenośności jest naprawdę imponujący: Zig wspiera takie architektury jak m68k,
loong, mips czy thumb i środowiska jak Haiku, UEFI, Serenity czy VisionOS. Oznacza
to, że mój projekt skonsolidowany dynamicznie jest ograniczany przez biblioteki C któ-
rych używa, czyli przez ANSI sndfile a bardziej C99 sndfile.

5.2.5 Lepsze doświadczenie tworzenia oprogramowania

W języku Zig 0.14 i 0.15 pisało mi się o wiele lepiej niż w języku C w standardzie C2x.
Przede wszystkim podobało mi się uproszczenie ręcznego zarządzania pamięcią

przez wykorzystanie alokatorów. Początkowo korzystałem ze standardowego alokatora
C, czyli std.heap.c_allocator i zarządzałem pamięcią dokładnie w ten sam sposób
jak w SIMNS. Kiedy zacząłem korzystać z std.heap.GeneralPurposeAllocator, który
przy podstawowym trybie kompilacji jest w istocie std.heap.debug_allocator, okazało
się, że moja aplikacja ma całkiem dużo wycieków pamięci! Później pomógł mi też w
niekorzystaniu z pamięci po jej zdealokowaniu. Bardzo cieszę się, że Zig zapewnia
również te funkcje, które dla C zapewnia kolejne oprogramowanie (np. Valgrind [36]).

Bardzo podobały mi się również:

• czyste wyróżnienie operacji kompilatora składnią @foo(),

• wbudowane logowanie, zarówno w czasie kompilacji jak i wykonania,

• domyślna zawartość śladu stosu i error return trace12,

• w porównaniu do GCC o wiele bardziej czytelne błędy kompilacji.

5.3 Rozwój sd2

Zanim usiadłem do programowania w Zigu postanowiłem stworzyć okrojoną wersję
SINMS która będzie analizowała plik i wyświetlała wyniki analizy w konsoli. Zmniejszyło
to ilość linijek kodu (ang. Lines Of Code, LOC) o 80%.

5.3.1 Porównanie do SINMS

Wersja 0.0.2 miała w sobie wszystkie funkcjonalności dema SINMS zawierając 30%
więcej kodu. Wersja 0.1.1 działała na systemach nie tylko POSIXowych, miała wszyst-
kie funkcjonalności SINMS i ich testy jednostkowe mając nieznacznie mniejszą ilość
LOC.

12Oryginalny i efektywny sposób na pokazanie tego skąd pochodzą błędy w kodzie i jak rozchodzą się
w programie.

36

https://ziglang.org/download/0.15.1/release-notes.html#Support-Table
https://en.wikipedia.org/wiki/Motorola_68000
https://www.loongson.cn/EN/application/list?id=39
https://en.wikipedia.org/wiki/MIPS_architecture
https://www.sciencedirect.com/topics/computer-science/thumb-instruction-set
https://www.haiku-os.org/
https://uefi.org/
https://serenityos.org/
https://developer.apple.com/documentation/visionos/
https://github.com/jiixyj/libebur128?tab=readme-ov-file#features
https://github.com/libsndfile/libsndfile?tab=readme-ov-file#requirements
https://ziglang.org/documentation/master/std/#std.heap.c_allocator
https://ziglang.org/documentation/master/std/#std.heap.debug_allocator
https://cwe.mitre.org/data/definitions/416.html

5.3.2 Pierwsza biblioteka Ziga

W wersji 0.1.0 wprowadziłem możliwość zapisu czasu w raporcie timestampem nie uni-
xowym (1000000000) a HTTP (2001.09.09 13:46:40). Tę integrację z biblioteką zig-time

[9] można wyłączyć kompilując program z flagą -Dwith_time=false.

5.3.3 Biblioteka yazap i model open-source

W tej samej wersji zacząłem też wykorzystywać yazap [7] do tworzenia komplekso-
wego interfejsu linii komend. Spełniał on wszystkie moje wymagania poza jednym: nie
wspierał określania wielu argumentów pozycyjnych (positional arguments) w deklara-
tywny sposób.

Dodałem tą funkcję lokalnie i w duchu oprogramowania open-source zapropono-
wałem swoje zmiany twórcom biblioteki. Zostały one przyjęte i sd2-0.3.1 wykorzystuje
funkcje Arg.multiValuesPositional z globalnie dostępnej kopii biblioteki.

Końcowo mój interfejs spełnia wytyczne standardu POSIX.1-2024 [4].

5.3.4 small_float

W wersji 0.1.2 zmieniłem dokładność zapisu efektów analizy (trackFloat) z f32 do
f16, czyli z około 7 do 3 cyfr po przecinku [10]. Tę opcję można zmienić ustawiając
opcję kompilacji -Dsmall_float na false. Domyślnie program używa szesnastu bitów
ponieważ w tabeli nie ma miejsca na więcej niż dwa miejsca po przecinku.

5.3.5 Nowe TrackInfo

W wersji 0.2.0 zoptymalizowałem najważniejszą strukturę: TrackInfo. Jest ona tak
ważna ponieważ przechowuje rezultaty analizy poszczególnych utworów.

Jej starą wersję przedstawia listing 10.
Aby uprościć obliczenie jej rozmiaru, wprowadzę następujące oznaczenia:

• S – rozmiar usize (size_t z C),

• tf – rozmiar trackFloat

• rs – @sizeOf(TrackInfo) dla <sd2-0.2.0,

• rs – @sizeOf(TrackInfo) dla >=sd2-0.2.0.

Przy domyślnych ustawieniach kompilacji architektury 64bitowej, rozmiary te przyj-
mują następujące rozmiary (podane w bajtach):

• S = 4

• tf = 2

37

https://github.com/prajwalch/yazap/pull/32
https://github.com/prajwalch/yazap/pull/32

pub const TrackInfo = struct {
file_path: []const u8,

channels: u4,
bit_depth: u7,
samplerate: u21,

iLUFS: trackFloat,
LRA: trackFloat,
TPLs: []trackFloat,
RMSs: []trackFloat,

...

Listing 10: Struktura TrackInfo w wersjach <0.2.0

Oznacza to, że rs będzie równy 32B:

rs = 2S + 4 + 2ft + 4S = 32

Zainspirowany A Practical Guide to Applying Data Oriented Design postanowiłem zmie-
nić swoją strukturę tak, aby obsługiwała maksymalnie dźwięk stereo zastępując dwa
grube wskaźniki na cztery pola trackFloat. To zmniejszyło rozmiar TrackInfo o nie-
malże czterdzieści procent:

rn = 2S + 4 + 2ft + 4ft = 20

5.3.6 Standard REUSE

W wersji 0.4.0 zmieniłem styl licencjonowania swojego oprogramowania z klasycznego
pliku LICENSE na standard REUSE 3.3 [31]. Jest to inicjatywa Europejskiej Fundacji
Wolnego Oprogramowania (FSFE) mająca uprościć licencjonowanie oprogramowania.

Jest to niezmiernie ważny temat, który dla małych projektów może wydawać się
wręcz pomijalny. Ja doświadczyłem tego jak uciążliwe mogą być kwestie licencyjne
kiedy chciałem zaktualizować paczkę Signala w Gentoo i napotkałem ponad dwudzie-
stojednotysięcznolinijkowy plik ACKNOWLEDGMENTS.md.

Przyznam również, że chciałem skorzystać z usługi API REUSE, ponieważ w tym
czasie pracowałem w FSFE i de facto byłem menedżerem zespołu który miał ją zmo-
dernizować.

5.3.7 Zmiany biblioteki standardowej Ziga

Zig 0.15 wprowadził najwięcej zmian łamiących kompatybilność od wersji 0.9.0 z 2021
roku. Jedną z nich jest Writergate [39] które wycofuje (deprecates) wszystkie implemen-

38

https://www.youtube.com/watch?v=IroPQ150F6c
https://fsfe.org
https://fsfe.org
https://packages.gentoo.org/packages/net-im/signal-desktop-bin
https://github.com/signalapp/Signal-Desktop/blob/main/ACKNOWLEDGMENTS.md

tacje operacji I/O z std.Io na rzecz niegenerycznych std.io.Reader i std.Io.Writer.
Sama lista zmian opisuje te zmiany jako extremely breaking i w sekcji Motywacja

odsyła do seminarium Don’t Forget to Flush z Systems Distributed 2025. Po obejrzeniu
tego wystąpienia byłem przekonany, że jest to dobry eksperyment i cieszyłem się, że
deweloperzy podjęli taką decyzję – w najgorszym wypadku będzie to dowód, że jest
to zła ścieżka. Wspomniany wcześniej ekstremalny stopień zepsucia funkcjonalnego
kodu odczułem znacząco ponieważ zapis i odczyt plików jest krytyczny dla mojego
programu.

Uważam, że jest to jeden z "uroków"korzystania z pół-ezoterycznego przez swoją
innowacyjność języka programowania i z tego powodu postanowiłem wspomnieć o tym
w tej pracy.

5.3.8 Plik README

Pisanie pliku README odłożyłem na sam koniec procesu tworzenia oprogramowa-
nia. Jako haker i miłośnik wolnego oprogramowania widziałem wiele takich plików i nie
napotkałem jeszcze takiego, który w pełni mi się podobał.

Zanim zacząłem korzystać z qBitTorrenta [30], który nota bene teraz utrzymuję w
Gentoo, korzystałem i wspierałem BiglyBT [5]. Tam właśnie po raz pierwszy miałem
styczność z naukowym podejściem do pisania tych plików gdy pewien doktorant Uni-
wersytetu w Melbourne zaproponował ulepszenie README projektu. Nie zgadzałem
się z zaproponowanym przez niego wzorem ale po raz pierwszy mogłem wskazać i
uzasadnić dlaczego.

Przeczytałem wiele nieautorytatywnych wpisów na blogach na ten temat i parę arty-
kułów naukowych. Jeden z nich [27] zdefiniował siedem przykładowych kategorii sekcji:

1. Co – kontekst i wstęp,

2. Dlaczego – zalety projektu,

3. Jak – instalacja i użytkowanie,

4. Kiedy – status, wersje i plan na przyszłość,

5. Kto – drużyna, społeczność, kontakt itd.,

6. Odwołania – dokumentacja, link do wsparcia, tłumaczenia

7. Wkład – sposób na wsparcie projektu.

Tak oceniam ich przydatność w moim projekcie:

1. Co – chciałem opisać czym jest moje oprogramowanie i co robi,

2. Dlaczego – jako ciekawostkę spisałem genezę projektu,

39

https://ziglang.org/download/0.15.1/release-notes.html#Writergate
https://packages.gentoo.org/packages/net-p2p/qbittorrent
https://packages.gentoo.org/packages/net-p2p/qbittorrent
https://github.com/BiglySoftware/BiglyBT/pull/3420
https://haoyu-gao.github.io
https://haoyu-gao.github.io
https://github.com/user-attachments/files/17773905/template-section.pdf

3. Jak – instalacja i kompilacja są oczywiste lecz udokumentowałem również opcje
kompilacji,

4. Kiedy – mam oddzielny plik do spisywania zdań a do innych funkcji wykorzystuję
funkcjonalności platformy hostingowej,

5. Kto – fakt, że to solowy projekt jest oczywisty i nie zależy mi na rozpoznawalności,

6. Odwołania – nie mam do czego się odwołać,

7. Wkład – nie zależy mi na wkładzie innych ludzi, ale mogę skorzystać z funkcjo-
nalności hostingu.

Jestem raczej zadowolony ze swojego pliku README i doświadczyłem tego jak
wymagające jest dobre jego zaprojektowanie i implementacja.

5.4 Efektywność działania

sd2 jednak korzysta z bibliotek C które zostały skompilowane zgodne z systemowymi
CFLAGS, podobnie jak SINMS. Sam program został skompilowany z flagą --release=fast

z kompilatorem zig-0.15.2.
Procedura pomiaru czasu wywołania pojedynczego procesu jest identyczna jak w

przypadku SINMS a jej wyniki przedstawia tabela 4. Procedura pomiaru czasu wywoła-
nia wieloprocesowego pomija użycie taskset a jej wyniki znajdują się w tabeli 5. Ponie-
waż jest to ostatnie pomiar podsumowałem zmierzone przeze mnie czasy na wykresie
na rysunku 5.

W idealnych warunkach program ośmioprocesowy na ośmiordzeniowym proceso-
rze powinien być osiem razy szybszy niż program jednoprocesowy. Moje pomiary są
kolejnym dowodem, że idealne warunki są daleko od rzeczywistości ponieważ mój pro-
gram nie był szybszy o 700% a zaledwie o 136%.

Jeśli wyłączyłbym hyperthreading idealny przyrost efektywności zmalałby do 300%
i zapewne ten realny również by się zwiększył.

Kolejnym kluczowym elementem jest ziarnistość zadań: im liczba plików n jest bliżej
wielokrotności liczby rdzeni procesora nCPU tym przyrost będzie większy. W albumach
które wybrałem średnia odległość n mod nCPU jest równa 3.(6).

Ponadto program będzie najbardziej efektywny jeśli wszystkie procesy skończą swoje
zadania jednocześnie. Na przykład analizując 6 identycznych utworów czterema proce-
sami na czterodzieniowym procesorze przy aktualnym poziomie ziarnistości obciążenie
procesora byłoby równe około 75%.

Końcowo jestem zadowolony z tego w jakim stopniu dodanie wielowątkowości zwięk-
szyło efektywność mojego programu i uważam, że implementacja tej funkcjonalności
zdecydowanie była tego warta.

40

Tabela 4: Zestawienie jednowątkowej szybkości analizy sd2 wybranych albumów

Album t1 [s] t2 [s] t3 [s] tśr [s] v X [MBps]
HYT 22.60 23.97 25.94 24.17 94 21.1
Ż63 52.59 51.39 51.75 51.91 90 17.4
MID 36.24 35.45 32.95 34.88 93 10.1
PPP 9.41 9.39 9.62 9.47 97 11.7
RAM 90.05 90.52 90.43 90.(3) 50 16.6
TTS 52.39 53.61 53.08 53.03 51 18.9

Tabela 5: Zestawienie wielowątkowej szybkości analizy sd2 wybranych albumów

Album t1 [s] t2 [s] t3 [s] tśr [s] v X [MBps]
HYT 10.45 10.25 10.17 10.29 220 49.6
Ż63 21.00 20.75 20.68 20.81 226 43.5
MID 13.40 13.35 13.38 13.38 244 26.3
PPP 4.98 4.97 4.92 4.96 185 22.4
RAM 38.45 36.66 37.29 37.47 119 40.0
TTS 19.32 21.61 23.53 21.49 126 46.5dane

Page 1

PPP

HYT

TTS

MID

RAM

Ż63

1 10 100 1000

Długość albumu
Średni czas analizy MusicScope
Średni czas analizy SINMS
Średni czas jednowątkowej analizy sd2
Średni czas analizy sd2

Czas [s]

A
lb

um

Rysunek 5: Podsumowanie czasów

41

5.5 Status quo sd2

Korzystałem z sd2 od kiedy osiągnęło funkcjonalność SINMS, czyli od kwietnia 2025
roku. W drugiej połowie tego roku program osiągnął swoją pełną funkcjonalność. W
styczniu 2026 roku, po ekstensywnej dokumentacji kodu i dodaniu README, został on
opublikowany. Od tego momentu można znaleźć go pod adresem https://codeberg.

org/fkobi/sd2.
Od tego momentu projekt jest publicznie dostępny jako wolne oprogramowanie i

rozwijany w modelu otwartoźródłowym. Każdy internauta może wchodzić w różnorakie
interakcje z projektem: od zostawienia gwiazdki czy obserwowania repozytorium, przez
zgłaszanie błędów aż po sugerowanie konkretnych zmian z pomocą funkcjonalności
Pull requests.

42

https://codeberg.org/fkobi/sd2
https://codeberg.org/fkobi/sd2

Posumowanie

Znalazłem pewien aspekt życia w którym nieoptymalność MusicScope była dla mnie
problemem. Dokonałem analizy tego programu i wyróżniłem najważniejsze cechy tego
typu oprogramowania celem znalezienia konkretnych aspektów, które mogę obiektyw-
nie ulepszyć.

Następnie zgodnie z iteracyjnym modelem kaskadowym stworzyłem prototypy w
różnych językach programowania do momentu wybrania Ziga, czyli nowej dla mnie
technologii.

Korzystając z metodologii CI/CD zreimplementowałem od zera istniejące funkcjo-
nalności MusicScope ulepszając je i czyniąc je bardziej zgodnymi ze standardami, za-
leceniami i dobrymi praktykami.

Swoją pracę upubliczniłem pod Europejską Licencją Publiczną 1.2 na platformie
Codeberg zgodnie z duchem Wolnego i Otwartźródłowego Oprogramowania.

Moim celem było stworzenie lepszego programu. Twierdzę, że mi się to udało po-
nieważ sd2 w porównaniu do MusicScope:

1. Można pobrać prosto od dewelopera z renomowanej platformy,

2. Działa na znacznie większej ilości platform,

3. Jest on używalny dla użytkowników z niepełnosprawnościami,

4. Jest wolnym oprogramowaniem typu copyleft, co zapobiega zabsorbowaniu
przez korporacje13,

5. Również analizuje pliki zgodnie z międzynarodowymi standardami,

6. Ma standardowy, deklaratywny, efektywny i intuicyjny interfejs,

7. W realnych warunkach działa ponad dwadzieścia razy szybciej,

8. Produkuje o wiele bardziej ergonomiczne raporty.

13Przykładem tego zjawiska niech będzie freenginx, czyli fork projektu nginx rozwijanego permisyw-
nym BSD-2 który został kupiony.

43

https://mailman.nginx.org/pipermail/nginx-devel/2024-February/K5IC6VYO2PB7N4HRP2FUQIBIBCGP4WAU.html
https://nginx.org
https://nginx.org/LICENSE
https://blog.nginx.org/blog/nginx-is-now-officially-part-of-f5

Podziękowania

Zacznę od podziękowań dla mojego promotora, czyli Bartłomieja Stasiaka – dziękuję
mu za zadeklarowanie poparcia dla tematu tej pracy jeszcze przed moim czwartym
semestrem Informatyki Stosowanej.

W drugiej kolejności podziękuję Europejskiej Fundacji Wolnego Oprogramowania za
przyjęcie mnie na staż na stanowisko administratora systemów podczas mojego ostat-
niego semestru pierwszego stopnia studiów. W tym kontekście dziękuję również admi-
nistracji Wydziału Fizyki Technicznej, Matematyki i Informatyki Stosowanej za umożli-
wienie mi de facto mieszkania i pracowania w Berlinie podczas studiowania w Łodzi.

Chcę również podziękować każdemu kto zapewnił mi warunki do pracy nad tym pro-
jektem, służył radą i pomocą w testowaniu a nawet po prostu słuchał moich pomysłów
i prezentacji. Tym samym dziękuję rodzicom, kolegom z kierunku i pracy oraz teraź-
niejszym i przeszłym przyjaciołom. Z szczególnością dziękuję Università degli Studi di
Cagliari, ponieważ to podczas mojego Sardyńskiego Erasmusa podjąłem najwięcej de-
cyzji projektowych i to właśnie w Cagliari napisałem najwięcej kodu sd2. Pomimo mojej
później rejestracji ta instytucja zapewniła mi fizyczną i mentalną przestrzeń w której
moja kreatywność prosperowała.

Jako, że jest to moja praca dyplomowa na kierunku Informatyka Stosowana chciał-
bym również podziękować wszystkim którzy zainspirowali mnie, umożliwili i byli wspar-
ciem w mojej zmianie kierunku z Fizyki Technicznej, a w szczególności: Michałowi Wa-
siakowi, Michałowi Dobrskiemu, Idzie Haider, Mariowi Linsowi, Tobiasowi Höllerowi,
Gabrielowi Molnarowi, Agnieszce Wosiak, Jakubowi Samkowi, Łukaszowi Moskwie,
Romanowi Krasiukianisowi, Michałowi Karbowańczykowi i Mateuszowi Smolińskiemu.

Na koniec podziękuję twórcom języka programowania Zig i wykorzystanych przeze
mnie bibliotek – jeśli miałbym stworzyć chociaż jedną z nich przed terminem skończenia
studiów sd2 było by z pewnością gorszym oprogramowaniem.

Poznajcie inżyniera

W ostatnich godzinach pisania tego dokumentu myślałem coraz więcej o cytacie z filmu
Meet the Engineer który jest w zasadzie monologiem tytułowej postaci. Zaczyna się on
następująco:

Jestem inżynierem więc rozwiązuję problemy. Nie takie w stylu Czym jest
piękno? ponieważ one przypadają do obszaru twoich dylematów filozoficz-
nych. Ja rozwiązuję praktyczne problemy.

44

https://www.youtube.com/watch?v=SNgNBsCI4EA&pp=ygURbWVldCB0aGUgZW5naW5lZXI%3D

Bibliografia

[1] Alacritty, a cross-platform, OpenGL terminal emulator. 3 paź. 2018. url: https:
//alacritty.org.

[2] Algorithms to measure audio programme loudness and true-peak audio level. Re-
komendacja BS.1770. International Telecommunication Union, 2007.

[3] Astral. Ruff, an extremely fast Python linter and code formatter. 29 sierp. 2022.
url: https://docs.astral.sh/ruff/.

[4] Austin Common Standards Revision Group. Portable Operating System Interface.
Standard IEEE 1003.1. Institute of Electrical i Electronics Engineers, 2024.

[5] BiglyBT, a feature filled, open source, ad-free, bittorrent client. 16 maj. 2006. url:
https://www.biglybt.com.

[6] Erik de Castro Lopo. libsndfile. 15 lut. 1999. url: https://libsndfile.github.
io/libsndfile/.

[7] Prajwal Chapagain. yazap, The ultimate Zig library for seamless command line
argument parsing. 28 sierp. 2022. url: https://github.com/PrajwalCH/yazap.

[8] Compact disc digital audio system. Standard IEC 60908:1987. Genewa, Szwaj-
caria: International Electrotechnical Commission, 1987.

[9] Meghan Denny. zig-time, a date and time parsing and formatting library. 17 paź.
2021. url: https://github.com/nektro/zig-time.

[10] Floating-Point Arithmetic. Standard IEEE 754. Institute of Electrical i Electronics
Engineers, 1985.

[11] Free Lossless Audio Codec (FLAC). Standard RFC 9639. Internet Engineering
Task Force, 2024.

[12] Fundacja Gentoo. Gentoo Linux. 31 mar. 2002. url: https://www.gentoo.org.

[13] Roy Ivy III i Terts Diepraam. uutils, a cross-platform Rust rewrite of the GNU co-
reutils. 20 kw. 2020. url: https://github.com/trifectatechfoundation/sudo-
rs.

[14] Information technology — Programming languages — C. Standard ISO/IEC 9899:2024.
Genewa, Szwajcaria: International Organization for Standardization, 2024.

[15] Andrew Kelly. „A Systems-Minded Approach to Creating a Music Player Appli-
cation”. Seminarium na konferencji. Systems Distributed ’24. 2024. url: https:
//www.youtube.com/watch?v=SCLrNqc9jdE&t=330 (term. wiz. 03. 12. 2025).

45

https://alacritty.org
https://alacritty.org
https://docs.astral.sh/ruff/
https://www.biglybt.com
https://libsndfile.github.io/libsndfile/
https://libsndfile.github.io/libsndfile/
https://github.com/PrajwalCH/yazap
https://github.com/nektro/zig-time
https://www.gentoo.org
https://github.com/trifectatechfoundation/sudo-rs
https://github.com/trifectatechfoundation/sudo-rs
https://www.youtube.com/watch?v=SCLrNqc9jdE&t=330
https://www.youtube.com/watch?v=SCLrNqc9jdE&t=330

[16] Andrew Kelly. „ZIG, a Programming Language for Maintaining Robust, Reusable
software”. Seminarium na konferencji. Emerging Technologies for The Enterprise
Conference. 2019. url: https://www.youtube.com/watch?v=Gv2I7qTux7g
(term. wiz. 03. 01. 2026).

[17] Jan Kokemüller. libebur128. 13 list. 2013. url: https://github.com/jiixyj/
libebur128.

[18] Loudness normalisation and permitted maximum level of audio signals. Reko-
mendacja R 128. European Broadcasting Union, 2014.

[19] Lulu "Morganamilo". Ruff, an extremely fast Python linter and code formatter.
28 paź. 2020. url: https://github.com/Morganamilo/paru.

[20] John MacFarlane, Martin Woodward i Jeff Atwood. CommonMark Spec. Standard
0.31.2. 2024. url: https://commonmark.org.

[21] Mojang Studios. Minectaft na AppleTV. 19 grud. 2016. url: https://minecraft.
fandom.com/wiki/Apple_TV_Edition.

[22] Music Player Daemon. Wer. 0.24.5. 31 lip. 2025. url: https://www.musicpd.org.

[23] NME. Bloc Party remove ‘A Weekend In The City: B-Sides’ from streaming. Data
publikacji: 2024-11-22. 2024. url: https://www.nme.com/news/music/bloc-
party- remove- a- weekend- in- the- city- b- sides- from- streaming- the-

audio-quality-was-well-below-what-we-expect-3815170 (term. wiz. 04. 12. 2025).

[24] OpenMP Architecture Review Board. OpenMP. 1 paź. 1997. url: http://openmp.
org.

[25] David Peter. bat, a cat(1) clone with wings. 22 kw. 2018. url: https://github.
com/sharkdp/bat.

[26] PipeWire. Wer. 1.4.9. 9 paź. 2025. url: https://pipewire.org.

[27] G.A.A. Prana, C. Treude i F. Thung. „Categorizing the Content of GitHub RE-
ADME Files”. W: Empirical Software Engineering 24 (2019), s. 1296–1327.

[28] Projekt GNOME. Assistive Technology Service Provider Interface. 2001. url:
https://gitlab.gnome.org/GNOME/at-spi2-core.

[29] Projekt GNOME. Orca. 3 wrz. 2006. url: https://gitlab.gnome.org/GNOME/
orca.

[30] qBittorrent BitTorrent client. 16 maj. 2006. url: https://ziglang.org/download/
0.15.1/release-notes.html.

[31] REUSE Specification. Standard 3.3. Berlin, Niemcy: Free Software Foundation
Europe, 14 list. 2024.

46

https://www.youtube.com/watch?v=Gv2I7qTux7g
https://github.com/jiixyj/libebur128
https://github.com/jiixyj/libebur128
https://github.com/Morganamilo/paru
https://commonmark.org
https://minecraft.fandom.com/wiki/Apple_TV_Edition
https://minecraft.fandom.com/wiki/Apple_TV_Edition
https://www.musicpd.org
https://www.nme.com/news/music/bloc-party-remove-a-weekend-in-the-city-b-sides-from-streaming-the-audio-quality-was-well-below-what-we-expect-3815170
https://www.nme.com/news/music/bloc-party-remove-a-weekend-in-the-city-b-sides-from-streaming-the-audio-quality-was-well-below-what-we-expect-3815170
https://www.nme.com/news/music/bloc-party-remove-a-weekend-in-the-city-b-sides-from-streaming-the-audio-quality-was-well-below-what-we-expect-3815170
http://openmp.org
http://openmp.org
https://github.com/sharkdp/bat
https://github.com/sharkdp/bat
https://pipewire.org
https://gitlab.gnome.org/GNOME/at-spi2-core
https://gitlab.gnome.org/GNOME/orca
https://gitlab.gnome.org/GNOME/orca
https://ziglang.org/download/0.15.1/release-notes.html
https://ziglang.org/download/0.15.1/release-notes.html

[32] Dennis M. Ritchie. The Development of the C Language. Nowy Jork, USA: ACM
SIGPLAN Notices, 1993, s. 201–208.

[33] Sky News. Kanye West’s new album Donda 2 will be only be available exclusively
on his own platform the Stem Player. Data publikacji: 2022-02-18. 2022. url:
https://news.sky.com/story/kanye-wests-new-album-donda-2-will-be-

only-be-available-exclusively-on-his-own-platform-the-stem-player-

12545167 (term. wiz. 03. 12. 2025).

[34] Richard Stallman. GNU Emacs. 20 mar. 1985. url: https://www.gnu.org/
software/emacs/.

[35] Trifecta Tech Foundation. sudo-rs, a memory safe implementation of sudo and su.
29 sierp. 2023. url: https://github.com/trifectatechfoundation/sudo-rs.

[36] Valgrind,an instrumentation framework for building dynamic analysis tools. 27 lip.
2002. url: https://www.valgrind.org.

[37] Xi-Vero. MusicScope. WebArchive. 2015. url: https://www.xivero.com/musicscope/
(term. wiz. 20. 05. 2018).

[38] Wine. Wer. 10.0. 21 sty. 2025. url: https://www.winehq.org.

[39] Zig Software Foundation. Zig 0.15.1 Release Notes. Wer. 0.15. 2025. url: https:
//ziglang.org/download/0.15.1/release-notes.html.

47

https://news.sky.com/story/kanye-wests-new-album-donda-2-will-be-only-be-available-exclusively-on-his-own-platform-the-stem-player-12545167
https://news.sky.com/story/kanye-wests-new-album-donda-2-will-be-only-be-available-exclusively-on-his-own-platform-the-stem-player-12545167
https://news.sky.com/story/kanye-wests-new-album-donda-2-will-be-only-be-available-exclusively-on-his-own-platform-the-stem-player-12545167
https://www.gnu.org/software/emacs/
https://www.gnu.org/software/emacs/
https://github.com/trifectatechfoundation/sudo-rs
https://www.valgrind.org
https://www.xivero.com/musicscope/
https://www.winehq.org
https://ziglang.org/download/0.15.1/release-notes.html
https://ziglang.org/download/0.15.1/release-notes.html

Spis rysunków

1 Interfejs MusicScope świeżo po uruchomieniu 17
2 Okno About MusicScope . 19
3 Raport graficzny MusicScope utworu Soma 19
4 Diagram stanów MusicScope z perspektywy użytkownika 20
5 Podsumowanie czasów . 41

Spis tabel

1 Informacje o albumach wykorzystanych do testowania efektywności analizy 12
2 Zestawienie szybkości analizy MusicScope wybranych albumów 22
3 Zestawienie szybkości analizy SINMS wybranych albumów 28
4 Zestawienie jednowątkowej szybkości analizy sd2 wybranych albumów . 41
5 Zestawienie wielowątkowej szybkości analizy sd2 wybranych albumów . 41

Spis kodów

1 Mockup wykorzystania imperatywnego interfeju linii komend sinms . . . 26
2 Przykładowe wykorzystanie SINMS . 27
3 Fragment track_info.zig ukazujący użycie biblioteki C ebur128 32
4 Deklarowane wersji w Zigu . 33
5 Deklarowanie wersji w C . 33
6 Generyczna funkcja add_frames z ebur128.c 34
7 Generyczna deklaracja funkcji add_frames w Zigu 34
8 Pseudokod C: kalkulacja i wyświetlenie RMS 35
9 Pseudokod Ziga: kalkulacja i wyświetlenie RMS 35
10 Struktura TrackInfo w wersjach <0.2.0 38

48

	Wstęp
	Cel i zakres pracy
	Analiza albumów muzycznych
	Cechy dobrego programu do analizy albumów
	Dostępność
	Dostępność technologiczna
	Dostępność dla osób z niepełnosprawnościami (accessibility)
	Dostępność prawna

	Kompleksowość analizy
	Przykładowe zastosowanie wskaźników

	Efektywność
	Ergonomia interfejsu
	Efektywność analizy
	Pomiar efektywności analizy
	Ergonomia raportów

	MusicScope
	Dostępność technologiczna
	Accessibility
	Dostępność prawna
	Uzyskiwanie
	Rozpowszechnianie

	Kompleksowość analizy
	Ergonomia interfejsu
	Przedstawienie interfejsu
	Przedstawienie użytkowania
	Ocena

	Efektywność analizy
	Ergonomia raportów
	Podświetlanie składni
	Szerokość tabeli
	Ekscesywna ilość raportowanych danych

	Podsumowanie

	Próba pierwsza: SINMS
	Interfejs użytkownika
	Usunięcie zbędnych elementów GUI
	Zmiana celu interfejsu analizy
	Interfejs linii komend (CLI)
	Deklaratywność
	Podsumowanie

	Język programowania i biblioteki
	Raportowanie
	Efektywność działania
	Status quo SINMS
	Haskellowe SINMS

	Próba druga: sd2
	Język programowania i biblioteki
	C++
	Rust
	Zig

	Zalety Ziga
	Pełna kompatybilność z C
	Koncept comptime
	Instrukcje defer i errdefer
	Przenośność
	Lepsze doświadczenie tworzenia oprogramowania

	Rozwój sd2
	Porównanie do SINMS
	Pierwsza biblioteka Ziga
	Biblioteka yazap i model open-source
	small_float
	Nowe TrackInfo
	Standard REUSE
	Zmiany biblioteki standardowej Ziga
	Plik README

	Efektywność działania
	Status quo sd2

	Podsumowanie
	Podziękowania
	Bibliografia
	Spis rysunków
	Spis tabel
	Spis kodów

