Politechnika t6dzka

Wydziat Fizyki Technicznej, Informatyki
i Matematyki Stosowane;j

Filip Kobierski
242336

PRACA DYPLOMOWA
inzynierska
na kierunku Informatyka Stosowana

Aplikacja CLI w jezyku Zig do analizy dzwieku
wzorowana ha MusicScope

Instytut Informatyki 172

Promotor: dr hab. inz. Barttomiej Stasiak

L ODZ 2026

Spis tresci

Wstep

[Cel | zakres pracy|

(1 Analiza albumow muzycznych|

2 Cechy dobrego programu do analizy albumow|

21 Dostepnosc|
2.1.1 Dostepnosc technologiczna]
2.1.2 Dostepnosc dla osob z niepetnosprawnosciami (accessibility)| . .
2.1.3 Dostepnoséprawnal
2.2 KompleksowosC analizy|

[2.2.1 Przyktadowe zastosowanie wskaznikow|
2.3 Efektywnos¢|.

[2.3.1 Ergonomiainterfejsu]
[2.3.2 Efektywnosc analizy] L.

2.3.3 Pomiar efektywnosci analizy|.

2.3.4 Ergonomiaraportow| oL

3 MusicScope|

(3.1 Dostgpnosc technologiczna]
[B.2 Accessibility| e
(3.3 DostgpnosCprawnal
3.3.1 Uzyskiwanie|.
3.3.2 Rozpowszechnianie|,
[3.4 KompleksowosC analizy|
(3.5 Ergonomiainterfejsul
3.5.1 Przedstawienie interfejsul
3.5.2 Przedstawienie uzytkowanial.

3.6 EfektywnosCanalizy),
[B.7 Ergonomiaraportdw|
8.7.1 Podswietlanie sktadnil

4 Proba pierwsza: SINM

4.1 Interfejs uzytkownikal L
4.1.1 Usunigcie zbednych elementow GUI|
[4.1.2 Zmianaceluinterfejsuanalizy|
4.1.3 Interfejs linii komend (CLI)
414 Deklaratywnosd.

415 Podsumowaniel
4.2 Jezyk programowania ibibliotekil o000

4.3 Raportowanie|

(<]

4.4 EfektywnosCdziatanial L. 28

4.5 Statusquo SINMS|o oL 28
4.6 Haskellowe SINMS]| 29

5 Proba druga: sd2 29
6.1 Jezyk programowaniaibiblioteki 30
BAT Cadl ..o 30

BI2 Rusl 30
................................... 31

5.2 Zalety Zigal 32
[6.2.1 Petnakompatybilnos¢zC| 32

[5.2.2 Koncept comptime| L. 32

5.2.3 Instrukcje deferierrdefer| 34

B.2.4 PrzenoSnosdo 34

[5.2.5 Lepsze doswiadczenie tworzenia oprogramowania 36

5.3 RozwoO]sd2| e 36
5.3.1 Poréwnaniedo SINMS|. 36

[5.3.2 Pierwsza biblioteka Ziga| 37

[5.3.3 Biblioteka yazap i model open-source| 37

B.3.4 small float] i 37

37

5.3.6 Standard REUSE] 38

38

39

5.4 EfektywnosCdziatanial L. 40
5.5 Statusquosd2 42
[Podsumowaniel 43
[Podziekowania 44
45
[Spis rysunkow| 48
48
48

Streszczenie

Ta praca dokumentuje proces powstania projektu sd2 od konceptdw poczetych przed
napisaniem pojedynczej linijki kodu az po upublicznienie gotowego rozwigzania na plat-
formie hostingowej git.

sd2 to oprogramowanie do analizy alouméw muzycznych bedace wolnosciowg re-
implementacjg od zera (ang. rewrite from scratch) funkcjonalnosci oferowanych przez
witasnosciowy program MusicScope. Jego celem jest naprawienie najwiekszych bte-
déw MusicScope i zapewnienie powszechnego dostepu do programu bedgcego efek-
tem tej pracy.

W tym dokumencie zawiera si¢ zdefiniowanie zagadnienia analizy albumdéw mu-
zycznych, przedstawienie cech dobrego programu do analizy albuméw muzycznych,
analiza istniejgcego juz programu, proces projektowania reimplementacji trzech pro-
totypdw w trzech jezykach programowania, proces rozwoju ostatniego z nich w pet-
noprawny produkt gotowy do uzycia w prawdziwym zyciu oraz analiza tego produktu
wedle wczesniej wyznaczonych kryteriow.

Stowa kluczowe: audio, analiza dZzwieku, CLI, ebur128, Zig
Keywords: audio, audio analysis, CLI, ebur128, Zig

Wstep

Reimplementacje od zera sg tak stare jak samo oprogramowanie i sg szczegolnie
trudne gdy deweloperzy nie majg dostepu do kodu Zrédtowego. Sg one jednak szcze-
gdlnie wazne w przypadku gdy reimplementacja rozpowszechniana jest jako Wolne
Oprogramowanie — tak wtasnie powstat GNU Emacs [34] po raz pierwszy opublikowany
w 1985 roku, a uzywany do dzis na przyktad przeze mnie do tworzenia oprogramowania
i dokumentdw.

Zagadnienie analizy aloumdw muzycznych, ktdre jest gtdwnym tematem niniejsze;j
pracy, opisze w detalach w sekgji[l] jednak juz teraz napisze, ze jest to bardzo niszowa
dziedzina. Postuguije sie oprogramowaniem analizujgcym albumy od niemalze pieciu
lat, wiec jestem w stanie wskaza¢ pozgdane cechy tego oprogramowania, co robie
w sekcji [2] Wedtug mnie jedyne uzywalne rozwigzanie dla uzytkownika koricowego
to MusicScope, ktdre jest niedostgpne i ma mnéstwo wad o co opisuje w sekcji [3| Z
tego powodu uwazam, ze sd2, czyli moja finatowa reimplementacja, jest szczegdlnie
przydatna i pozgdana.

W sekcjach opisuje i uzasadniam najwazniejsze decyzje projektowe prob re-
implementaciji, od jezyka programowania przez struktury danych az po paradygmat in-
terfejsu uzytkownika. W tych rozdziatach znajdujg sie rowniez pomiary efektywnosci
funkcjonalnych prototypow.

Na koniec opisuje i komentuje proces tworzenia i utrzymywania sd2. Poréwnuje je
rowniez z MusicScope obiektywnie udowadniajac, ze mdj projekt wyzwolenia i ulepsze-
nia tego narzedzia zakorczyt sie sukcesem.

Juz we wstepie zachece natomiast do analizy kodu Zrédtowego mojego i samodziel-
nego przetestowania jak dziata. Niezbedne do tego informacje znajdujg sie na stronie
https://codeberg.org/fkobi/sd2.

https://codeberg.org/fkobi/sd2

Cel i zakres pracy

Celem niniejszej pracy jest reimplementacja funkcjonalnosci tworzenia raportéw teksto-
wych programu do analizy dZzwieku MusicScope bez korzystania z jego kodu Zrédto-
wego (ang. rewrite from scratch). Tworzenie programu od zera pozwala zmieni¢ wiele
kluczowych jego aspektdw. To przedsiewziecie ma réwniez na celu:

1. uczynienie oprogramowania dostepnym

+ opublikowanie go jako Wolne Oprogramowanie,

* natywne wsparcie jadra Linux,
2. ulepszenie ergonomii zarowno programu jak i generowanych raportow,
3. znaczace zwiekszenie efektywnosci analizy

» zmiana paradygmatu interfejsu uzytkownika z GUI aktualizowanego w czasie
rzeczywistym na CLI,

» wykorzystanie jezyka programowania Zig.

Wybratem ten temat gtéwnie z dwdch powoddw. Po pierwsze chciatem aby moja
praca inzynierska rozwigzywata realny problem, a po drugie aby byta pretekstem do na-
uczenia sie nowego jezyka programowania systemowego. Wiem, ze rozwigzany przeze
mnie problem jest realny — przez pie¢ lat bytem Redaktorem Muzycznym w Studenckim
Radiu Zak Politechniki £.6dzkiej, z czego prawie dwa lata petnitem funkcje Szefa Re-
dakcji muzycznej. Ponadto od jeszcze diuzszego czasu jestem audiofilem, wiec mozna
powiedziec, ze éw problem dotyka mnie na porzadku dziennym. Jesli chodzi o progra-
mowanie systemow, na poczgtku roku 2024 wiedziatem o Zigu tylko to, ze, podobnie
jak C, jest jezykiem programowania systemowego z recznie zarzgdzang pamiecig oraz,
ze jego interoperacyjnos¢ z C jest na bardzo wysokim poziomie. Teraz napisatem kom-
pleksowy program w tym jezyku wykorzystujgc biblioteki w obydwu jezykach. Co chyba
wazniejsze, zaproponowane przeze mnie zmiany zostaty przyjete do uzywanych przeze
mnie bibliotek, w tym biblioteki standardowej Zigal!

1 Analiza albuméw muzycznych

W kontekscie tej pracy album oznacza wydany zbiér utwordw muzycznych. Rozpoczne
wiec od rozpatrzenia go z perspektywy przetwarzania sygnatow.

Album dzietem muzycznym wiec, przetwarzany jest dzwiek, czyli styszalne pasmo
fal akustycznych.

Nieodzowng cechg albumu jest to, ze jest on sygnatem o scisle okreslonej zawarto-
ci. Jest tak poniewaz album to dystrybucja efektu procesu produkcji muzycznej, czyli
miksu finatowego zwanego tez masterem. Kopie mastera sg rozpowszechniane na roz-
nych mediach, od analogowych ptyt winylowych az po cyfrowe systemy wbudowane
[33]. Album jako sygnat ma wiec jedng poprawng forme. Nawet resampling w wyz-
szej czestotliwosci niebedacej wielokrotnoscig oryginalnej zmienia w matym stopniu
zapis i kopia w (niepotrzebnie) wyzszej rozdzielczosci nie bedzie identyczna na pozio-
mie bitowym (bit-perfect).

Wykorzystujgc bezstratne kodeki mozna zarejestrowa¢ dzwiek na cyfrowym no-
Sniku. W kontekscie muzyki, w przypadku modulowania PC, sygnat dzwiekowy, musi
by¢ zapisany w bezstratnym kodeku przynajmniej z czestotliwoscig 44100 Hz i szesna-
stoma bitami gtebokosci [8]. Ta jakos¢ ma réwniez miano Redbook audio, a standard
zwie sie Redbookowym ze wzgledu na to, ze dokument kitory go definiowat byt czer-
wong ksigzka.

Dane cyfrowe mogg byc¢ idealnie reprodukowane wiec dystrybucja cyfrowa umozli-
wia stuchaczom doswiadczenie dzieta w doktadnie takiej formie jakg przygotowat arty-
sta. Jest to mozliwe tylko jesli skorzystajg z bezstratnego kodeka dZzwigku, co za sprawg
ustandaryzowanego Wolnego Bezstratnego Kodeka DZwieku [11] nie jest trudne. Pliki,
z ktorych odtwarzana jest muzyka mogg by¢ jednak wynikiem przetwarzania stratnego.
Zrédto stratno$ci moze wynikaé miedzy innymi z:

« fizycznosci medium (np. uszkodzona ptyta lub czytnik ptyt),
» reenkodowania z uzyciem stratnego kodeka,

* uzycia filtrdw wprowadzajgcych przestery, w tym ISP (ang. Inter-Sample Peaks).

Zatozenie, ze cyfrowos$¢ zapisu zapewnia bezstratnosc tresci jest niepoprawne i moze
mie¢ powazne konsekwencje [23].

Instytucje i jednostki prowadzgce muzyczne bazy danych kiérym zalezy na jakosci
dzwieku mogg wiec analizowac¢ posiadane pliki dzwiekowe celem sprawdzenia ich ja-
ko$ci. W Studenckim Radiu Zak Politechniki £ 6dzkiej na przyktad ten krok jest czescig
cotygodniowego procesu wcielania nowych utworéw do emisiji.

1Ze wzgledu na skrajng niszowos¢ dystrybucji muzyki w formacie DSD nie bede jej omawiat w tej
pracy.

2 Cechy dobrego programu do analizy albumoéw

Korzystam z oprogramowania do analizy aloumdw okoto pigciu lat. W tym czasie przez
niespetna dwa lata petnitem w Zaku role Szefa Redakcji Muzycznej i bytem odpowie-
dzialny za kontrole jakosci utworéw wgrywanych do naszej bazy danych. Uwazam wiec,
ze mam wystarczajgco duzo doswiadczenia abym mdgt wskazad najwazniejsze cechy
dobrego programu do analizy aloumdw.

2.1 Dostepnosé

Programu, ktéry nie jest dostepny nie mozna uzy¢ wiec jego inne cechy sg pomijalne.
Tym samym jest to jego najwazniejsza charakterystyka.

Najbardziej podstawowym typem dostepnosci jest dostep do danych programu (np.
posiadanie ptyty lub mozliwos¢ pobrania plikdw z internetu). Oprogramowanie, ktérego
dane sg niedostepne (np. port Minecrafta na AppleTV [21] mozna sklasyfikowac¢ jako
lost medi. Ten status czyni oprogramowanie fundamentalnie nieuzywalnym catkowi-
cie wykluczajgc wszelkie dalsze rodzaje dostepnosci. Z tego powodu w tej pracy bede
pisat o oprogramowaniu, ktérego dane sg dostepne.

Dostepnos¢ oprogramowania definiuje i oceniam wiec trzema charakterystykami
ktdre opisatem w ponizszych sekcjach.

2.1.1 Dostepnosé¢ technologiczna

Posiadanie kodu Zrodtowego bgdz plikow dystrybucji oprogramowania nie jest warun-
kiem dostepnosci technologicznej; program musi dziata¢ z rozsgdng efektywnoscia.

Jak zazwyczaj w informatyce, dostepnosc¢ technologiczng mozna skategoryzowacd
na poziomie oprogramowania (S) i osprzetowania (H). Ponizej wymienitem przykta-
dowe wymagania:

H: architektura procesora,
 H: proste wymagania sprzetowe (np. 2GB pamieci operacyjnej),
» H: zatozenie obecnosci pewnego sprzetu (np. CUDA),

+ S: system operacyjny,

S: format pliku wykonywalnego,

» S: obecnosc bibliotek systemowych (np. GNU libc).

2https://lostmediaarchive.fandom.com/wiki/Minecraft_(lost_Apple_TV_port_of_the_
game)

https://lostmediaarchive.fandom.com/wiki/Minecraft_(lost_Apple_TV_port_of_the_game)
https://lostmediaarchive.fandom.com/wiki/Minecraft_(lost_Apple_TV_port_of_the_game)

2.1.2 Dostepnos¢ dla osoéb z niepetnosprawnosciami (accessibility)

Program moze technicznie by¢ w stanie dziata¢ na danym sprzecie, jednak uzytkownik
dalej moze nie byC w stanie z niego skorzystac¢ ze wzgledu na swoje niepetnosprawno-
Sci.

Przyktadowo oprogramowanie z GUI na OpenBSD aby by¢ dostepne dla osdéb niewi-
domych powinno implementowac Assistive Technology Service Provider Interface [28]
aby by¢ kompatybilnym z czytnikami tekstu takimi jak Orca [29].

2.1.3 Dostepnosé prawna

Z punktu widzenia prawa mozna powiedzie¢, ze Wolne Oprogramowanie jest definicjg
dostepnosci, a rozwigzania wiasnosciowe sg jego antytezg.

Wolne oprogramowanie wedle definicji Europejskiej Fundacji Wolnego Oprogramo-
wania gwarantuje swoim uzytkownikom cztery wolnosci:

1. wolnos¢ korzystania,

2. wolnos¢ analizy,

3. wolnosc¢ dystrybucii,

4. wolnosc¢ ulepszen (zmian).

Na dfuzszg mete dostepnosc¢ prawna jest wiec najistotniejsza; dzieki czwartej wol-
nosci dwa pozostate typy dostepnosci moga zostaé ulepszone.

2.2 Kompleksowos¢ analizy

Analiza ma ocenic jak bardzo zawartosc réznych plikdw jest podobna do mastera celem
wybrania tego 0 najwyzszej jakosci.

Jesli finatowy miks jest dostepny, to ocena podobienstwa jest tak prosta jak dodanie
do siebie sygnatu testowanego i odwrotnosci mastera a nastepnie zliczenie na przyktad
RMS. Jednakze nie ma wtedy potrzeby analizowaé sygnatu pochodnego gdyz mozna
wyeksportowacé nowy sygnat o odgdrnie okreslonych charakterystykach. Oddolne usta-
lenie charakterystyk wymaga ustugi dziatajgcej na zasadzie MusicBrainz/ czy CDDB]i
wykracza poza zakres tej pracy.

Wynikiem analizy powinny by¢ wiec czytelne dla cztowieka charakterystyki pozwala-
jace na ocene ktdra dystrybucja przejawia najwiecej dobrych praktyk zapisu sygnatow
dZzwiekowych.

Moim zdaniem najwazniejsze wskazniki to:

1. TPL (ang. True Peak Level) — najwyzsza zarejestrowana amplituda,

10

https://musicbrainz.org
https://en.wikipedia.org/wiki/CDDB

2. I-Loudness (I-LUFS) — gtosnos$¢ mierzona w petnej skali zgodnie z [2],
3. LRA (ang. Loudness RAnge) — zakres gtosnosci,

4. RMS (ang. Root Mean Square) — Srednia kwadratowa sygnatu.

2.2.1 Przyktadowe zastosowanie wskaznikéw

 Europejska Unia Nadawcow rekomenduje [18] aby:

» TPL nie przekraczat —1(+0.3) dB, aby unikng¢ clippingu,
* I-LUFS wynosit —23(+1) LUFS, aby zmniejszy¢ potrzebe normalizacji.

« Zmniejszony zakres gtosnosci moze wskazywac uzycie kompresora.

* RMS powinno by¢ jak najwieksze przy TPL nie przekraczajgcym zera.

2.3 Efektywnosé

Efektywnosc jest wazna dopiero w dostepnym programie ktéry przeprowadza komplek-
sowg analize. Wydzielitem trzy typy efektywnosci ktdre opisuje w ponizszych podsek-
cjach.

2.3.1 Ergonomia interfejsu

Interfejs uzytkownika, jak przystato na dziedzine interakcji cztowiek-komputer, powi-
nien by¢ ergonomiczny. Wygoda korzystania z interfejsu bezposrednio przektada sie
na efektywnos¢ catego procesu. Interfejs powinien wiec by¢ czytelny, zrozumiaty i za-
pewniac¢ uzyteczne mozliwosci dostosowania jego dziatania.

2.3.2 Efektywnos¢ analizy

Analiza dZzwieku jest ztozona obliczeniowo i wymagajgca pamieciowo. Poniewaz jest
to gtéwna funkcja programu to wtasnie na nig powinien on poswiecac prawie catosc
swoich zasobow.

Wskazane jest aby program optymalnie zarzgdzat zasobami przydzielonymi mu
przez system operacyjny, wiec na przyktad aby nie miat garbage-collectora i kompi-
lowat sie do kodu natywnego.

2.3.3 Pomiar efektywnosci analizy

Aby zmierzy¢ efektywnos¢ analizy przygotowatem serie testéw. Sg to proste pomiary
czasu analizy szesciu albumdéw o réznych czestotliwosciach i gtebokosciach prébko-
wania, ale tez dtugosciach i ilodciach utwordw. Spis tych aloumdéw i ich charakterystyk
znajduje sie w tabeli[1|a ponizej znajduje sie wyjasnienie oznaczen w niej uzytych:

11

https://en.wikipedia.org/wiki/Clipping_%28signal_processing%29

* SR (ang. Sampling Rate)— czestotliwos¢ probkowania w Hz,
- BD (ang. Bit Depth) — gtebokosé bitowa

e n —ilos¢ utwordw,

[— dtugos¢ trwania w sekundach,

* s — catkowity rozmiar plikéw audio (zmierzony Unixowg komendg du --summarize

--human-readable).

Tabela 1: Informacje o albumach wykorzystanych do testowania efektywnosci analizy

Oznaczenie Album SR[kHz] BD n [[s] s[B]

HYT Hybrid Theory 48 24 12 2270 510M
763 Live Zak 63 48 24 25 4700 906M
MID Made In The Dark 441 16 13 3258 352M
PPP Pink Season: The Prophecy 441 16 4 915 111M
RAM Random Access Memories 88.2 24 13 4475 1.5G
TTS That’s The Spirit 9% 24 11 2703 1G

Testy przeprowadzitem w moim srodowisku, czyli:
» OS: Gentoo Linux 2.18 (default/linux/amd64/23.0/desktop);

* jadro: gentoo-kernel-6.12.58,
+ flagi kompilacji -02 -march=native -flto=8,

» CPU: Intel i5-1135g7,
* RAM: Micron 16 GB LPDDRA4,
« SSD: Samsung 860 EVO (M.2).

Aby ujednolici¢ czynnik cieplny, testy zaczynatem po uprzednim rozgrzaniu sprzetu do
temperatury okoto 80 stopni Celcjusza narzedziem stress.

Szybkosc¢ v zdefiniowatem jako stosunek dtugosci albumu do Sredniego czasu jego
analizy ¢:

v=-
t

Przeptywnosc¢ X jest natomiast stosunkiem rozmiaru albumu do czasu jego ana-
lizy t:

x="2
/

Jest to przydatna metryka poniewaz analizowane przeze mnie albumy sg zakodowane
w formacie FLAC z r6znym stopniem kompresiji.

3ilog¢ bitéw poswiecona na zapis amplitudy sygnatu

12

https://en.wikipedia.org/wiki/Du_(Unix)

2.3.4 Ergonomia raportow

Program powinien generowac raporty w postaci przejrzystych plikow ktérych odczyt nie
wymaga specjalistycznego oprogramowania.

13

3 MusicScope

MusicScope (MS) [37] to graficzny program do analizy dZzwieku stworzony przez firme
XiVero. Licencja na jedng instalacje kosztowata okoto 25 Euro.
Oficjalny opis producenta brzmi nastepujgco:

The MusicScope is a high precision software audio analyzer and measuring
tool that works as an Audio-Microscope to visualize the different quality
aspects of a music collection.

Pozwolitem sobie pogrubi¢ stowo visualize poniewaz moim zdaniem to kluczowa cecha
MS: ma to by¢ program do wizualizacji réznych aspektéw dzwigku.

Poza analizg plikdw dZwigkowych program umozliwia ich odtwarzanie oraz analize
sygnatéw odbieranych z wejscia audio w czasie rzeczywistym. Sg one niezalezne i w
kontekscie analizy aloumoéw duplikujg funkcjonalnos¢ analizy plikdw z o wiele gorszg
ergonomig, wiec wiecej o nich nie wspomne.

Najstarsza informacja o MS jakg mogtem znaleZ¢ to prezentacja programu opubli-
kowana na serwisie YouTube 28 lutego 2015 roku.

W tej sekcji przeanalizuje i ocenie to oprogramowanie jako narzedzie do analizy
albumdw na podstawie moich doswiadczen z Windowsowa wersjg 2.1.0. Przez pare lat
uzywatem jej na Windowsie 10, a teraz wytacznie na potrzeby mojej pracy inzynierskiej,
korzystam z niej na Gentoo Linux [12] przy uzyciu Wine [38].

3.1 Dostepnos¢ technologiczna

MusicScope napisane jest w czystej Javie — powinno by¢ uruchamialne na kazdej plat-
formie obstugiwanej przez HotSpot, wiec miedzy innymi Solaris, FreeBSD dziatajgce
na ppc64 czy arm. Publikacja producenta dziatajg jednak tylko na MacOSie na archi-
tekturze amd64 i Windowsie na amd64 i x86.

Instalator zawiera JRE z OpenJDK w wersji smej i producent nie zapewnia mozli-
wosci korzystania z innego srodowiska.

3.2 Accessibility

Programy graficzne napisane w Javie celem zwiekszenia swojej dostepnosci dla oséb
niepetnosprawnych mogg implementowac Accessibility APl przez javax.accessibility.
MusicScope korzysta z toolkitu Swing ktéry wspiera to API.

Gtéwnym interfejsem MusicScope jest ekran raportu, ktéry jest bitmapg i nie imple-
mentuje Accessibility API. Swing jest wykorzystywany tylko w zaktadce opcji programu
i selekcji sciezek. Tym samym program XiVero nie jest dostepny dla 0osdb z niepetno-
sprawnosciami.

14

https://www.northdata.com/XiVero%20GmbH,%20Viersen/

3.3 Dostepnosé¢ prawna

3.3.1 Uzyskiwanie

Art. 278 Kodeksu Karnego poswiecony jest kradziezy. W przypadku kradziezy nieszcze-
gdlnie zuchwatej przewiduje kare pozbawienia wolnosci od 3 miesiecy do 5 lat. Ponizej
znajduje sie cytat z § 2:

Tej samej karze podlega, kto bez zgody osoby uprawnionej uzyskuje cudzy
program komputerowy w celu osiggniecia korzysci majgtkowe;.

Kiedy program byt sprzedawany zdobycie go nieoficjalnymi drogami dystrybucji byto
wiec uznawane za przestepstwo.

XiVero zakoriczyto swojg dziatalnos¢ w 2022 roku i od tego czasu nie ma oficjalnych
Zrddet dystrybucji. Czy w takim przypadku uzyskanie tego programu moze miec cel
osiggniecia korzysci majatkowej? OdpowiedZ na to pytanie nie jest oczywista.

3.3.2 Rozpowszechnianie

Art. 116 ustawy o prawie autorskim dotyczy rozpowszechniania utworu bez pozwolenia.
Ponizej znajduje sie cytat z § 1:

Kto bez uprawnienia albo wbrew jego warunkom rozpowszechnia cudzy
utwor [...], podlega grzywnie, karze ograniczenia wolnosci albo pozbawie-
nia wolnosci do lat 2.

MusicScope nie wyszczegdlnia warunkéw rozpowszechniania, wiec jest traktowany

jako typowe oprogramowanie na wtasnosciowej licenciji.

3.4 Kompleksowos¢ analizy

Raport tekstowy MusicScope zawiera informacje o oprogramowaniu generujagcym ra-
port, czyli jego nazwe i wersje oraz link do strony producenta.
Raportowane informacje o utworach sg przechowywane w tabeli i sg to:

1. nazwa pliku,

2. format (PCM/DSD),

3. gtebokos¢ bitowa (BD),

4. czestotliwosc prébkowania (SR),

5. czestotliwos¢ odciecia, czyli najwyzsza zarejestrowana,

6. TPL dla kanatdw;

15

* lewego,
* prawego,

» Mid, czyli Srednig sumy lewego i prawego,

Side, czyli Srednig rdznicy sygnatu lewego i prawego,
7. RMS: lewy, prawy, Mid i Side,
8. Sredni CREST, czyli stosunek TPL do RMS (aCREST),
9. Srednie Peak to Loudness Ratio (aPLR),

10. gtosnosc catkowitg (I-LUFS),

11. zakres gtosnosci.

Na samym dole widnieje niejasn Total Loudness Range.

3.5 Ergonomia interfejsu

3.5.1 Przedstawienie interfejsu

Interfejs MusicScope przedstawia rysunek [1] Jedyng interaktywna jego czescig jest
pasek na samej gorze zawierajgcy nastepujgce przyciski:

1. gtosnik — pozwala wyciszy¢ program podczas analizy plikdw w czasie rzeczywi-
stym,

2. folder — pozwala wybrad foldery i pliki do analizy,
3. stop,

4. rozpocznij/wzndéw analize w czasie rzeczywistym,
5. mikroskop — rozpocznij/wznéw szybkg analize,

6. ustawienia,

7. informacije.

Kliknigcie w pole gdzie pdZniej wyswietlana jest nazwa analizowanego pliku otwiera
okno zarzgdzania pIayIist. To wtasnie tam przy kazdym uruchomieniu programu
nalezy zaznaczyC Folder / Album Report jesli chcemy otrzymac raport tekstowy.

4W przypadku mojej kopii albumu blink182 z 2003 roku MusicScope raportuje 7.8 dB. Zkonkateno-
watem i przeanalizowatem te pliki sd2. Zaraportowat on LRA na poziomie 10.69 dB. Nie wiem jak te
wartos$¢ kalkuluje program XiVero.

STekst nastepujgcy po No track loaded — jest za dtugi aby zmiescié sie z przeznaczonym na niego
miejscu wiec wypycha Ustawienia i Informacje poza normalng rame okna. Widac¢ to wyraznie przy po-
réwnaniu rysunku do dowolnego zrzutu ekranu oprogramowania z zatadowanym utworem.

16

0:00:00 f 0:00:00 Mo track loaded - Click here to open the playlist or drag & drop audio files

—
Linear Frei 5

Rysunek 1: Interfejs MusicScope swiezo po uruchomieniu

&

17

Zrzut ekranu okna pojawiajgcego sie po kliknieciu w przycisk Informacje przedsta-
wia rysunek 2. Tam kliknigcie w Software License otwiera nowe okno z informacjami
o licencjach wolnosciowych bibliotek z ktdrych korzysta projekt, czyli: dekodery ALAC,
FLAC i MP3 licencjonowane pod BSD-3 i jaudiotagger pod LGPLP]

Po kliknieciu w Ustawienia otwiera sie okno z zaktadkami. Pod wzgledem generowa-
nia raportdw tekstowych jedyna uzyteczna zaktadka to System. Mozna tam suwakami
ustawic priorytet watkéw i predkosc analizy, kolejno na 11 i 6 pozioméw. Domyslinie sg
one ustawione na maksymalny priorytet i predkosc.

Aby przeanalizowa¢ utwdr nalezy oknem wyboru plikéw wskazaé¢ go w systemie
plikéw i rozpocza¢ analize Mikroskopem. Giéwnym wynikiem analizy bedzie raport
graficzny, ktory jest praktycznie zapisem interfejsu po zakonczonej analizie. Taki stan
przedstawia rysunek 3]

Po zakonczonej analizie albumu program pozostaje w stanie identycznym do tego
jak gdyby analizowat ostatni utwdr; nie komunikuje osiggniecia celu w zaden sposadb.

3.5.2 Przedstawienie uzytkowania

MusicScope jest w stanie wygenerowac jeden raport na jeden zbidr plikdw zakolejko-
wanych do analizy co drastycznie wydtuza czas analizy wielu alboumoéw. Aby lepiej to
zilustrowac sporzgdzitem diagram stanow przedstawiajgcy workflow uzytkownika. Jest
to rysunek 4]

Przeanalizowanie pojedynczego albumu wymaga wiec osmiu akcji:

1. wywotanie programu,

2. klikniecie folderu,

3. wybdr celdw analizy,

4. otworzenie okna kolejki,

5. wybranie raportu tekstowego,
6. zamkniecie okna kolejki,

7. rozpoczecie analizy,

8. zamkniecie programu.

Wybranie raportu tekstowego nie jest zerowane przy wyczyszczeniu kolejki wiec moze
by¢ wybrane raz na uruchomianie programu.

6Jest to niezgodne z prawdg. Jaudiotagger w wersji 2.2.6, czyli tej w ktdrej jest wykorzystywany w
MusicScope, jest licencjonowany pod warunkami LGPL-2.1-or-later, a nie LGPL-2.0*. XiVero ztamato
warunki licenciji tej biblioteki wiec ich program nie powstat legalnie.

18

Version: 2.1.0
MusicScope developed by XiVero CmbH

Please visit our web page www.xivero.com
to get more information (e.g. a manual) about the product,

Online Manual

XiVero CmbH, Schubertstrasse 5, D-41749 Viersen
Geschaftsfuhrung: Lars Inger, Sebastian Krempel
Handelsregister: Amtsgericht Disseldorf, HRE 71541
USt-IdNr.: DE2924839739

Software License

Close

Rysunek 2: Okno About MusicScope

09_Soma.flac

rum [kHz]

Rysunek 3: Raport graficzny MusicScope utworu Soma

19

® ®

A
Wywotanie Zamkniecie
programu programu
| Gtéwna petla |
e) N
Zamknieci Otworzenie
L amkniecie i -
Czekanie na wybor [€ okna kolejki okna kolejki [panort graficzny
celu analizy <€ ostatniego utworu
Klikniecie Czekanie na zmiane kolejnosci)
i ien i Analiza
Folderu i ustawien analizy
\ 4 Wyczyszczenie kolejki
Nawigacja \(Czekanie na
systemu plikéw Wybr celu/ 'L rozpoczecie analizy
celéw analizy A
- J
Otworzenie Zamkniecie
okna kolejki okna kolejki
Y

i ustawien analizy

Wybranie raportu tekstowego

[Czekanie na zmiane kolejnosci

Rysunek 4: Diagram stanéw MusicScope z perspektywy uzytkownika

Przy analizie wigkszej ilosci albumow uzytkownik pozostaje w ramach stanow, ktore
okreslitem petlg gtdwng do momentu zamknigcia programu.

3.5.3 Ocena

Interfejs MusicScope by¢ moze wyglada imponujgco na pierwszy rzut oka, jednak juz
po krétkim obcowaniu z programem fatwo zauwazalne sg jego znaczgce wady.

Po pierwsze, brak responsywnosci. Uzytkownicy sg przyzwyczajeni do tego, ze jesli
ich wskaznik myszy najedzie na element, kidry nie wiedzg czy mozna klikng¢ to ten
element zmieni swdj stan pokazujgc tym samym mozliwos¢ interakcji. W MusicScope
zaden interaktywny element interfejsu nie jest responsywny.

Po drugie, aby program tworzyt raport tekstowy przy kazdym jego wywotaniu nalezy
zaznaczyc te opcje.

Po trzecie, co najwazniejsze, brak obstugi kolejkowania wielu folderéw. Oznacza to,
ze uzytkownik chcgcy przeanalizowac n albumow musi n razy przejs¢ przez zmudng
petle gtdwng interakciji.

Po czwarte, brak obstugi folderéw jako cele. Chcac przeanalizowad wszystkie pliki w
folderze, nalezy przy uzyciu okna dialogowego Swing wybrac wszystkie pliki z albumu.
Jest to tym bardziej ucigzliwe im wiecej utworéw ma wydawnictwo i im wiecej plikéw
niedzwigkowych (np. oktadka, log ripowania) znajduje sie w folderze.

3.6 Efektywnos¢ analizy

MusicScope jest programem napisanym w czystej Javie z interfejsem bedgcym bit-
mapg. Interfejs ten jest aktualizowany wiele razy na sekunde.

Wykonatem na MusicScope testy opisane w sekcji Czas mierzytem recznie
stoperem cyfrowym i wyniki zaokraglatem do jednosci. Wyniki pomiarow przedstawia
tabela 2

Obserwacje dotyczgce procesu analizy:

1. co prawda jest on wielowatkowy jednak najwyzsze zuzycie procesora jakie zaob-
serwowatem nie przekraczato 65%,

2. w wyniku niezrozumiatego dla mnie btedu przy analizowaniu tych samych albu-
mow ponownie szybkos$¢ analizy spadata drastycznie wiec musiatem zamykac
program aby pozbyc¢ sie tego efektu,

3. btad opisany w poprzednim punkcie wystepowat réwniez przy analizie innych al-
bumdw, wiec kazda analiza oznaczata nowe wywotanie programu.

Zdziwit mnie fakt, ze MusicScope analizuje sygnaty o réznych przeptywnosciach z
bardzo zblizong szybkoscig. Aby potwierdzi¢ czy na pewno tak jest przeanalizowatem

nastepujacy plik:

21

Tabela 2: Zestawienie szybkosci analizy MusicScope wybranych albumdéw

Album ¢ [s] ta2[s] t3[s] ter [S] v X [MBps]
HYT 226 225 225 225.(3) 10.1 2.3
763 454 454 453 453.(6) 10.4 2.0
MID 313 316 314 315.(3) 10.3 1.1
PPP 86 90 86 87.(3) 10.5 1.3
RAM 419 420 418 419 10.7 3.6
TTS 258 257 258 257.(3) 10.6 3.5
 SR: 410 Hz,

* BD: 8,
* dtugosc: 90s,

+ zawartos¢: sinusoida o czestotliwosci 100 Hz.

Wtedy okazato sie, ze MusicScope nie obstuguje plikéw o niestandardowych charak-
terystykach; program nie zakolejkowywuje pliku i nie komunikuje dlaczego, ani nawet,
ze tego nie zrobit. Po zmianie SR i BD na RedBookowe dowiedziatem sie, ze plik w
formatach zaréwno RIFF WAV jak i FLAC jest analizowany w okoto 9 sekund.
Wykonane przeze mnie pomiary udowadniaja, ze szybkosc analiz MusicScope
nie zalezy od przeptywnosci pliku a od czasu jego trwania i jest ona rdwna okoto 10.

3.7 Ergonomia raportow

3.7.1 Podswietlanie sktadni

Raporty tekstowe MusicScope to pliki 0 nazwie MusicScope-Report.txt. To najprost-
sze pliki tekstowe ktdrych przyttaczajgca wiekszos¢ oprogramowania nie bedzie nawet
probowata interpretowac, a wiec rowniez podswietla¢ sktadni.

Ponadto sktadnia zapisu tabel jest niestandardowa, wiec nawet reczne wiaczenie
podswietlenia nie polepszy czytelnosci raportu.

3.7.2 Szerokoscé tabeli

Tabela w pliku tekstowym bedzie czytelna tylko jesli nie bedzie przekraczata szerokosci
wyswietlanych linii lub jesli tekst moze wykraczac poza wyswietlany obszar, jak komaorki
w arkuszu kalkulacyjnym. Nie jest to jednak typowe zachowanie i nie powinno sie na
nim polegac.

Tabela z charakterystykami dZzwieku ma szerokos$¢ 223 znakéw.

7zdefiniowana w sekcji

22

Jest to niespotykanie szeroka tabela ktéra bardzo rzadko bedzie mogta by¢ odczytana

bez zmniejszenia rozmiaru wyswietlanego fontu. Dla poréwnania ponizej wymienitem

najdtuzsze akceptowalne dtugosci Iinije plikdw tekstowych w réznych konwencjach:
+ 80: klasyczny dalekopis (TTY), Linux C, Haskell, Perl, Go, Ruby, Java...

100: Zig i Rust

120: C#

140: Gentoo ebuild (zawiera URLe)

Ponadto kolumna Track przechowujgca nazwe pliku ma statg szerokos¢ 33 znakow,
niezaleznie od dtugosci nazw plikdw.

3.7.3 Ekscesywna ilo$¢ raportowanych danych

Uwazam, ze wypisywanie charakterystyk Mid jest niepotrzebne: uzytkownik samodziel-
nie jest w stanie obliczyC tg wartosc. Jesli zalezy nam na podaniu tej wartosci to mozna
poming¢ oddzielne informacje na temat kanatéw.

Poddaje w watpliwos¢ rdwniez zasadnos¢ zapisywania charakterystyk Side; jest to
ciekawa acz mato przydatna charakterystyka.

3.8 Podsumowanie
MusicScope jest programem niedostepnym, poniewaz:

+ dostepnosc technologiczna jest ograniczona,
 dostepnosc dla oséb z niepetnosprawnosciami jest bliska zeru,

 dostepnosc¢ prawna jest bardzo niska:

» rozpowszechnianie jest nielegalne,

* legalnos¢ uzyskania nie jest pewna.

MusicScope analizuje o wiele wiecej charakterystyk dZzwieku niz jest zapisywanych
w raporcie tekstowym. Tam duzo uwagi poswiecone jest na TPL i RMS: oddzielnie
raportowane sg informacje na kanat oraz ich sume i réznice.

Interfejs MusicScope jest nietypowy i niewspdétczesny, a korzystanie z niego nie-
wygodne i niesatysfakcjonujgce. Zostat on zaprojektowany pod analize pojedynczych
albumow wiec przy wiekszych ilosciach uzytkownik zmuszony jest wielokrotne powta-
rza¢ te same czynnosci co jest nieefektywne i niepotrzebnie meczace.

MusicScope analizuje pliki o réznej przeptywnosci w czasie niewiele mniejszym niz
jedna dziesiata ich trwania.

8Maksymalna szeroko$¢ tabeli jest rownowazna z maksymalng szerokoscig linii w danej konwenciji.

23

Raporty MusicScope sg okropne do czytania; tabela jest zdecydowanie za szeroka
a separatorami nienagtéwkowych kolumn sg po prostu spacje. Pliki to zwykty tekst bez
préb zastosowania jakiegokolwiek markupu.

4 Prdéba pierwsza: SINMS

W 2024 roku postanowitem zrobiC tak zwany rewrite from scratch funkcjonalnosci Mu-
sicScope stuzgcej do generowania raportow. Pierwszg prébe nazwatem SINMS, czyli
SINMS Is Not MusicScope nawigzujac do starej hakerskiej tradycji rekursywnych akro-
NiMow.

W tym rozdziale opisze najwazniejsze decyzje projektowe podjete przeze mnie pod-
czas pracy nad SINMS oraz zaprezentuje jego wydajnosc i stan obecny.

4.1 Interfejs uzytkownika

4.1.1 Usuniecie zbednych elementéw GUI

Jesli uzytkownikowi zalezy tylko na raportach tekstowych, wiec jesli analizuje on al-
bumy, to interfejs MusicScope ogranicza sie do:

« folderu,

» nazwy pliku / kolejki,

» mikroskopu.

Reszta przyciskow jest zbedna.
Te elementy interfejsu przektadaja sie na raport tekstowy:

1. Format:

» gtebokosc¢ bitowa,
* czestotliwosc probkowania.

2. Poziomy:

« TPL,

* RMS,

» CREST,
* PLR,

* I-LUFS,
* LRA.

3. Wykres amplitud czestotliwosci.

24

https://en.wikipedia.org/wiki/Recursive_acronym#Use_in_computing
https://en.wikipedia.org/wiki/Recursive_acronym#Use_in_computing

Wykres jest jednak nieefektywny: z perspektywy raportu potrzebuje on przechowywac
tylko jedng najwyzszg czestotliwos¢ podczas gdy przechowuje on wartos¢ amplitudy
dla wszystkich mozliwych.

Oznacza to, ze zupetnie zbedne sa:

1. spektrogram,

2. wizualizacja korelaciji,

3. wykres kotowy z poziomami,

4. wykres pionowy z poziomem S-Mode,

5. czesé wykresu poziomego opisujgca S-Mode i M-Mode.

Usuniecie ich zmniejszy iloS¢ wymaganych obliczen i przyspieszy dziatanie programu.

4.1.2 Zmiana celu interfejsu analizy

W MusicScope celem interfejsu jest wyswietlanie analizowanych charakterystyk w cza-
sie rzeczywistym. W przypadku analizy albumdw jest to bezuzyteczne poniewaz rapor-
towany jest stan wskaznikdw na koniec analizy.

Doktadna interpretacja interfejsu podczas analizy wymaga jej zatrzymania, co jest
nieakceptowalne jesli uzytkownikowi zalezy na jej efektywnosci.

Proby pobieznej interpretacii charakterystyk w trakcie analizy bedg mato miarodajne
ze wzgledu na ich ciagtg zmiennosc¢. Nawet jesli uzytkownik skupi sie na parametrach
ktdre na pewno sie nie zmienig, na przyktad na wykresie kotowym poziomdw poczatku
utworu, nie bedzie on miat czasu na interpretacje poniewaz analiza utworu wkrétce
dobiegnie konca.

Interfejs analizy moim zdaniem powinien co najwyzej powiadamiac¢ uzytkownika o
jej postepach. Uwazam tez, ze zatrzymanie interfejsu na czas analizy jest akceptowalne
a nawet wskazane jesli uzytkownikowi zalezy na maksymalizacji efektywnosci.

4.1.3 Interfejs linii komend (CLI)

Zmiana interfejsu graficznego na ten linii komend znaczgco zmniejsza skomplikowanie
programu, co w konsekwenciji przyspiesza jego dziatanie.
Korzystanie z programu mogtoby wiec wygladac tak jak na listingu

4.1.4 Deklaratywnosé

Imperatywne programy CLI, zwane tez dialogowymi, sg przydatne gdy program ma
duzo funkcjonalnosci. Dobrym przyktadem bedzie fdisk z util-linux, kidrego funk-
cjonalna czes¢ strony man ma okoto trzysta linijek. W przypadku prostszych narzedzi

25

$ sinms
Press h to see the list of available commands

>h

cd PATH -- change directory to PATH

a PATH -- start analysis. If no PATH provided uses current directory
q -- quit

> cd Music/Angels_and_Airwaves

> a Chasing_Shadows

Analysed Overload.flac

Analysed Artillery.flac

Analysed Voyager.flac

Analysed Chasing_Shadows.flac

Text report saved!

> q

$ file Music/Angels_and_Airwaves/Chasing_Shadows/report.txt
report.txt: ASCII text

Listing 1: Mockup wykorzystania imperatywnego interfeju linii komend sinms

lepiej sprawdza sie interfejs deklaratywny ktdéry zbiera wszystkie informacije od uzytkow-
nika przed wywotaniem programu. Przyktadem takiego narzedzie bedzie na przyktad
touch z GNU Coreultils, ktérego funkcjonalna czes¢ strony man ma zaledwie 70 linijek.

Zastosowanie deklaratywnego interfejsu oznacza tez, ze z perspektywy uzytkow-
nika program staje sie bezstanowy. Uzytkownik wywotuje oprogramowanie zapewnia-
jac mu wszystkie informacje wymagane do dziatania, a program wykonuje swoje akcje
i wytgcza sie. Znaczgco zwigksza to ergonomie pracy z narzedziem zwiekszajgc wy-
gode i efektywnosc.

Dodatkowg zaletg jest fatwa skryptowalnos¢ zadania: wywotanie programu z po-
ziomu skryptu powtoki niczym nie rézni sie wtedy od wywotania go przez uzytkownika.

4.1.5 Podsumowanie

Interfejs uzytkownika SINMS implementuje cztery zmiany, ktére wymienitem w poprzed-
nich sekcjach. Listing |2| przedstawia przyktadowe wykorzystanie tego interfejsu w jego
najnowszej wers;ji|

4.2 Jezyk programowania i biblioteki

Zalezato mi na maksymalnej efektywnosci mojego programu wiec wybratem najbar-
dziej efektywny znany mi jezyk: C, a konkretnie standard 2x, ktéry okazat sie by¢ stan-
dardem C23 [14].

®Wiecej detali zawiera sekcja [4.5]

26

$ sinms --help
Usage: sinms [OPTION]... [TARGET]...
Analyzes audio in TARGET(s)

-e, --explain-headers include explanation of header-meanings in reports

-p, --print instead of reporting to file, print output

-r, --recursive analyze all folders within a folder

-8, --silent suppress all output

-v, --verbose explain what is being done

-1, --lazy do not analyze a folder if has a report present
--help display this help and exit
--version output version information and exit

TARGET(s) can be either files or directories

$ sinms -v Music/Angels_and_Airwaves/Chasing_Shadows/

INFO: File "O1_0Overload.flac" analyzed

INFO: File "O2_Artillery.flac" analyzed

INFO: File "O3_Voyager.flac" analyzed

INFO: File "O4_Chasing_Shadows.flac" analyzed

INFO: A report was generated to "Music/Angels_and_Airwaves/Chasing_Shadows/"
$ file Music/Angels_and_Airwaves/Chasing_Shadows/report.org

report.org: ASCII text

Listing 2: Przyktadowe wykorzystanie SINMS

Wiedziatem, ze szybkie programy ktdrych uzywam na co dzien takie jak PipeWire
czy MPD wykorzystuja biblioteke sndfile [6] do odczytywania plikéw audio wigc
postanowitem z niej skorzystac.

Podczas testowania prototypéw SINMS zauwazytem, ze amplituda nigdy nie prze-
kraczata wartosci 1 (0 dB), nawet jesli MusicScope mdwito inaczej. Dowiedziatem sie
wtedy o Inter-Sample Peaks| i zaczatem korzystac¢ z biblioteki ebur128 [17], ktéra im-
plementuje Rekomendacje 128 Europejskiej Unii Nadawcow wykorzystujgcy wspo-
mniany wczesniej standard ITU [2]. Tym samym moje oprogramowanie jest réwniez
zgodne z dokumentami EBU Tech 3341 i EBU Tech 3342 poniewaz to wtasnie ta bi-
blioteka liczy wigkszos¢ charakterystyk dZzwieku.

Poczatkowo planowatem aby SINMS mégt dziata¢ réwniez na Windowsie jednak
oznaczatoby to na przyktad rezygnacje z korzystania z POSIXowego getopt . h. Stwier-
dzitem, ze nie zalezy mi na tym na tyle, aby trudzi¢ sie szukaniem rozwigzania tego
problemu. PdzZniej okazato sig, ze na Windowsie nie ma réwniez dirent . h. Utwierdzito
mnie to w przekonaniu, ze SINMS nie bedzie wspierato systemdéw niePOSIXowych.

4.3 Raportowanie

W SINMS postanowitem réwniez naprawi¢ problemy z ergonomig raportow ktdre opi-
satem w sekcji

27

https://www.masteryourtrack.com/post/inter-sample-peak-explained
https://tech.ebu.ch/docs/tech/tech3341.pdf
https://tech.ebu.ch/docs/tech/tech3342.pdf

Przede wszystkim postanowitem wykorzystac jezyk markupu tekstu. Wybieratem
miedzy CommonMark [20] a Emacsowym org-mode; obydwa to lekkie jezyki ktére sg
uzywane od ponad 20 lat. Zdecydowatem sie wybrac¢ ten drugi ze wzgledu na wbu-
dowang obstuge metadanych ktdra polepszy czytelnosc pliku. Zmniejszytem rowniez
szerokos¢ tabeli z 223 do 107 znakéw tym samym zapewniajgc jego zgodnos¢ z wy-
tycznymi dla jezyka C#. Inng wazng zmiang byto usuniecie charakterystyk Mid i Side,
w powodow opisanych we wczesniej wspomnianym rozdziale.

4.4 Efektywnos¢ dziatania

SINMS to program napisany w czystym C. Wykorzystywane przez niego biblioteki zo-
staty skompilowane zgodnie z systemowymi CFLAGS, a sam plik wykonywalny z pozio-
mem -03.

Mierzytem efektywnosc programu przypisanego do konkretnej jednostki procesujg-
cej przy uzyciu taskset i time. Wyniki pomiaréw przedstawia tabela[3]

Poniewaz SINMS jest jednowatkowe, zajmowato tylko jeden rdzer logiczny mojego
procesora; maksymalne obcigzenie systemu wynosi wiec 12,5%.

Tabela 3: Zestawienie szybkosci analizy SINMS wybranych albumdéw

Album ¢ [s] t3[s] t3 [s] ter [S] v X [MBps]

HYT 27.48 2812 2872 28.11 81 18.14
763 58.73 5869 60.80 59.41 79 15.25
MID 40.67 40.69 40.11 40.49 80 8.69
PPP 9.25 8.91 8.71 8.96 102 12.39
RAM 9995 97.67 100.13 99.25 45 15.11

TTS 49.85 48.94 48.41 49.07 55 20.38

Zdziwita mnie rozbieznos¢ v wiec powtdorzytem analize trzech ostatnich albumow
ponownie otrzymujgc podobne czasy.

Rdzne czasy analizy plikdw sg dowodem tego, ze waskim gardtem MusicScope byto
aktualizowanie interfejsu; dopiero po usunieciu go zauwazalne byty réznice w plikach.

SINMS wykorzystujgc ¢wierc czasu obliczeniowego CPU zuzywanego przez Music-
Scope jest od niego od czterech do dziesieciu razy szybsze.

4.5 Status quo SINMS

SINMS osiagneto petna funkcjonalnos¢ pod koniec lipca 2024 roku. Od tego czasu
korzystatem z niego zamiast z MusicScope poniewaz juz wtedy uznatem moje starania
za udane. M¢j program byt o wiele wygodniejszy i o wiele szybszy oraz generowat
lepsze raporty.

Ostatnig poprawke wcielitem do repozytorium szdstego sierpnia 2024 roku i od tego
czasu kod programu pozostat bez zmian.

28

https://orgmode.org/manual/Markup-for-Rich-Contents.html

Wiedziatem, ze nastepnym krokiem rozwoju aplikacji bedzie wielowatkowos¢. Do-
wiedziatem sie, ze najlepiej bedzie abym zaimplementowat jg przy uzyciu POSIXowej
biblioteki pthread.h ktdra nie doda zaleznosci mojemu programowi. Dziata ona jednak
na stosunkowo niskim poziomie co zniechecito mnie, szczegodlnie poniewaz na potrzeby
SINMS napisatem juz tysigce linijek kodu C.

Rozwazatem jeszcze zastosowanie OpenMP [24] jednak poza wprowadzaniem do-
datkowej zaleznosci opiera sie ono na preprocesorze. Preprocesor zostat dodany do
jezyka C rok po jego pierwszym wydaniu [32] jako préba obejscia istotnych ograniczen
samego jezyka. Jedng z funkcjonalnosci, ktorg umozliwit byty makra. Pozwalajg one
na wiele, ale:

1. ciezko sie je debuguije,
2. nie sg typowane,
3. czesto majg (nieoczekiwane) efekty uboczne.

Kiedy programuje w C staram sie wiec unika¢ makr jesli jest to mozliwe.

4.6 Haskellowe SINMS

Haskell to czysto funkcjonalny (purely functional) jezyk programowania, wiec nie ma w
nim efektéw ubocznych.

O SIMNS mozna mysle¢ jak o funkcji: przyjmuje ona na wejsciu cele i flagi (opcje) a
zwraca przeanalizowane dane. Poniewaz chciatem nauczyc sie funkcjonalnego jezyka
programowania pomyslatem, ze przepisanie mojego programu do tego jezyka bedzie
ciekawym i rozwojowym wyzwaniem.

Udato mi sie zintegrowaC libsndfile za sprawg biblioteki zapewniajgcej Haskel-
lowe powigzania. Niestety dla 1ibebur128 nikt nie napisat jeszcze tych powigzan. Pi-
sanie takich powigzan bez znajomosci jezyka to bardzo czasochtonne i wymagajace
stwierdzitem, ze Haskell nie jest odpowiednim jezykiem programowania dla mojego
projektu.

5 Préba druga: sd?2

Najwiekszym problemem SIMNS byt dla mnie brak wielowagtkowosci i fakt, ze nie chcia-
tem jej implementowaé w C. Gtéwnym celem sd2 byto wiec przepisanie SINMS w je-
zyku programowania systemowego, ktéry wspiera wielowgtkowos¢ na poziomie swojej
biblioteki standardowej. Nie potrafie programowac w zadnym jezyku ktdry spetnia te
wymagania, wiec personalnie oznaczato to nauczenie sie zupetnie mi obcego jezyka
programowania.

29

5.1 Jezyk programowania i biblioteki

Zalezato mi na tym aby skorzysta¢ z tych samych bibliotek, ktére wykorzystatem w
SINMS. Pozostawito mi to wybdr trzech jezykdw programowania: C++, Rusta i Ziga.
C++ w oczywisty sposdb wspiera biblioteki C, Zig robi to na niemalze réwnie wysokim
poziomie a Rust ma powigzania do libsndfile i swoj odpowiednik 1ibebur128.

511 C++

Od publikaciji standardu C++11 jezyk ten obstuguje wspétbieznosé na poziomie biblio-
teki standardowej i z oczywistych powoddw jest w duzym stopniu kompatybilny z C.

Prace nad jezykiem znanym dzisiaj jako C++ rozpoczety sie w 1979. Wtedy nazy-
wany byt jeszcze "C z klasami", co pokazuje jakimi wartosciami kierowat sie Bjarne Stro-
ustrup przy jego tworzeniu. Obiektowos$¢ znaczgco komplikuje jezyk programowania i
nie jest potrzebna w moim programie wiec wolatem jej unikng¢. Ponadto nie chciatem
korzystac z jezyka programowania kiéry ma ponad czterdziesci lat i dalej ma problemy
C. Pomijajgc wspomniany wczesniej procesor nadal budowa nietrywialnych projektow
wymaga dodatkowego oprogramowania z wtasng sktadnig itd. (GNU autotools, Meson,
CMake, Bazel, Waf...).

Bardzo zaintrygowat mnie cytat ktéry znalaztem w internecie szukajgc informacji na
ten temat [15]:

C++: jest peten bteddw, jest nieefektywny, jest niekompletny, jest bloated,
kompiluje sie o rzad wielkosci dtuzej niz C, offloaduje potowe implementacji
jezyka do konsolidatorow czego konsekwencjg sg enigmatyczne i niemoz-
liwe do rozwigzania problemy pojawiajace sie tak pdZzno w procesie tworze-
nia oprogramowania, ze chce sie implementowac lovecraftowskie obejscia
problemu niszczgc swojg poczytalnos¢ do momentu w ktdrym korzystanie
z pomocy Sanapii zdaje sie by¢ normalne. .. Ponadto fiasko kolejnosci sta-
tycznej inicjalizacji wydaje sie by¢ bardziej funkcjonalnoscig niz btedem. Nie
ma stabilnego ABI lecz jego uzytkownicy btednie wierzg, ze jestinaczej. C++
wstydzi sie danych zamiast wstydzi¢ sie wtasnej implementacji wyjatkdw.

Zgtebitem temat i przekonatem sig, ze te zarzuty zdecydowanie nie sg bezpod-
stawne. Wtedy podjatem decyzje, ze nie skorzystam z tego jezyka programowania.
5.1.2 Rust

Rust powstat w 2006 roku a wydanie 1.0.0 miato miejsce w 2015 roku. Nie jest on
obiektowy i nie wykorzystuje garbage-collectora co rowniez mi sie podoba. Jedng z
najwazniejszych cech Rusta jest bogaty system typow ktdry ma zapewnic bezpieczen-
stwo na poziomie watkdw i pamieci (thead-safety i memory-safety).

30

Ciezko mi byto nie styszec¢ o Ruscie ze wzgledu na rewrite’y klasycznych narzedzi
jak cat [25] sudo [35] czy nawet catego coreutils [13]. Poza tym bytem Swiadomy
efektywnosci narzedzi takich jak ruff [3], paru [19] i alacritty [1] a nawet zawarcie
go w jadrze Linux™|

Kanat No Boilerplate Trisa Oatena na YouTube byt kolejnym i chyba najbardziej
wptywowym Zrédtem informacji na ten tema Po moich niedawnych doswiadczeniach
z Haskellem funkcjonalne elementy Rusta zachecaty mnie jeszcze bardziej. Menedzer
paczek i system budowy cargo rowniez mi sie podobat: nie musiatem uczyc sie kolej-
nego jezyka, aby méc skompilowac swoje oprogramowanie.

Z drugiej strony Rust korzysta jednak z makr, tak samo jak piecdziesiecioletnie C...
Sa one oczywiscie o wiele lepsze, ale dalej sg to makra.

Nie bytem réwniez przekonany, czy bezpieczeristwo pamigciowe jest dla mnie tak
wazne. Oczywiscie piszgc SINMS tworzytem tego typu btedy; przy pierwszym segmentation
fault nawet celebrowatem to doswiadczenie, tak integralne dla programowania w C.
Btedy te nie sg jednak krytyczne dla mojego programu wiec moze lepiej bytoby gdybym
wybrat jezyk programowania, ktérego gtéwny cel jest dla mnie bardziej znaczacy?

Rust zdecydowanie jest dobrym wyborem do napisania aplikacji do analizy albumow
jednak nie bytem pewien czy jest on doskonatym wyborem dla mnie.

5.1.3 Zig

Zig po raz pierwszy pojawit sie w 2016 roku i jeszcze nie miat swojej wersji 1.0.0.
Podobnie jak Rust nie jest obiektowy i nie wykorzystuje garbage-collectora, jednak w
przeciwienstwie do Rusta pamiecig trzeba zarzgdzac recznie.

O Zigu po raz pierwszy ustyszatem w ramach prezentacji Zig w 100 sekund od
Fireship jeszcze w 2023 roku. Wtedy postrzegatem Ziga jako C bez preprocesora, bez
ukrytego przeptywu sterowania ale z defer.

Przypomniatem sobie o Zigu w marcu 2025 roku niedtugo po wydaniu wers;ji 0.14.
W miedzyczasie widziatem w internecie nastepujgce zdanie:

Jesli Rust jest ulepszeniem dla uzytkownikéw C++, Zig jest ulepszeniem dla
uzytkownikéw C.

Po sprawdzeniu, Ze biblioteka standardowa obstuguje wielowgtkowos¢ postanowitem,
ze sprébuje zrobi¢ w nim minimalny prototyp (Proof of Concept) celem stwierdzenia,
czy jest sens zmiany jezyka programowania.

Zig mi sie spodobat wiec postanowitem zreimplementowac caty swdj program w
tym wtasnie jezyku programowania.

Podczas pracy poznatem wiecej zalet Ziga ktdre wymienie w nastepnym rozdziale

"Onttps://lore.kernel.org/1kml/202210010816 . 1317F2CCkeescook/
"Najwieksze wrazenie wywart na mnie film Rust: Your code can be PERFECT.

31

https://www.youtube.com/@NoBoilerplate
https://www.youtube.com/watch?v=kxT8-C1vmd4
https://www.youtube.com/watch?v=kxT8-C1vmd4
https://lore.kernel.org/lkml/202210010816.1317F2C@keescook/
https://www.youtube.com/watch?v=Q3AhzHq8ogs

5.2 Zalety Ziga

Zig zostat stworzony jako préba naprawienia najwiekszych probleméw jezyka C bez
dodawania wielu funkcjonalnosci [16].

5.2.1 Petna kompatybilnos¢ z C

Uzywanie bibliotek C w Zigu jest niemalze tak proste jak uzywanie ich w samym C —
wystarczy zaimportowac je z uzyciem @cImport i @cInclude.

Najwiekszg wadg korzystania z bibliotek C jest fakt, ze zazwyczaj prefiksujg swoje
publiczne funkcje i zmienne, co odrobine zmniejsza czytelnos¢ kodu Ziga.

Na listingu [3| zamiescitem fragment kodu mojego programu odpowiadajgcy za obli-
czenie TPL. Importuje tam ebur128.h i umozliwiam bezposrednie odwotywanie si¢ do
jego symboli przez prefix r128. Aby poprawi¢ czytelno$¢ kodu zdefiniowatem réwniez
statg r_ok.

const r128 = QcImport(@cInclude("eburi28.h"));
const r_ok r128.EBUR128_SUCCESS;

Il

var state: 7*rl128.eburl28_state = undefined;
var tmp_double: f64 = undefined;

state = r128.ebur128_init(
bi.getChannels(),
bi.samplerate,
r128.EBUR128_MODE_TRUE_PEAK

)

defer r128.ebur128_destroy(&state);

if (r128.ebur128_add_frames_float(state, bi.samples.ptr, bi.frames) != r_ok)
log.err("Allocating frames went wrong", .{});

const calc_rval: i32 = r128.eburl28_true_peak(state, i, &tmp_double);
if (calc_rval != r_ok)
log.err("TPL Calculations went wrong (r128 code {d})", .{calc_rvall});

Listing 3: Fragment track_info.zig ukazujgcy uzycie biblioteki C ebur128

5.2.2 Koncept comptime

Jedng z najpotezniejszych cech Ziga jest mozliwos¢ wykonywania kodu w czasie kompi-
lacji. Jest to mozliwe ze wzgledu na to, ze kompilator traktuje wszystko co interpretuje
jako wyrazenie. Pozwala to miedzy innymi na pozbycie sie makr z petnym zachowa-
niem jego funkcjonalnosci. Dalej w tym rozdziale zaprezentuje te przypadki uzycia na

32

przyktadach z prawdziwego zycia.

1.

pub
pub
pub

pub

Operowanie na statych

Chciatem aby w moim oprogramowaniu mozna byto sprawdzi¢ wersje zaréwno
przez stringa jak i za pomocg liczb catkowitych, podobnie jak mozna to zrobi¢ w
Pythonie przy pomocy sys.version i sys.version_info.

W Zigu po prostu definiuje state liczby catkowite i korzystam z funkcji biblioteki
standardowej std.fmt.comptimePrint aby w czasie kompilacji stworzy¢ stringa,
co pokazuje listing [4]

const major = 1;

const minor = 2;
const patch = 3;

const full comptimePrint("{}.{}.{}", .{ major, minor, patch });

Listing 4: Deklarowane wersji w Zigu

W czystym C mozna tylko zdefiniowac oddzielnie liczby catkowite i string lecz jest
to niepotrzebnie ucigzliwe do zmiany.

Aby aktualizacja wersji nie byta ucigzliwa mozemy wiec skorzystaé z preproce-
sora, na przyktad jak pokazuje na listingu[5] Kosztem tej wygody jest wprowadze-
nie praktycznie drugiego jezyka programowania i przyrost objetosci kodu o 150%!

#define MAJOR 1
#define MINOR 2
#define PATCH 3

const int VERSION_MAJOR = MAJOR;
const int VERSION_MINOR = MINOR;
const int VERSION_PATCH = PATCH;

#define STR_HELPER(z) #x

#define STR(x) STR_HELPER(z)

#define VERSION_STRING STR(MAJOR) "." STR(MINOR) "." STR(PATCH)
const char* VERSION_STR = VERSION_STRING;

Listing 5: Deklarowanie wersji w C

Poniewaz dziatanie z preprocesorem jest nieintuicyjne mozna zaprzgc do tego
system budowy. Tak proste zadanie moim zdaniem nie powinno wymagac wyko-
rzystania tak ztozonego oprogramowania.

2. Programowanie generyczne

33

W sd2 korzystam z biblioteki C ebur128 i tam funkcja add_frames| jest tworzona
w czasie kompilacji dzieki programowaniu generycznemu. Osigga to nieczytelne
i nieprzyjazne dla IDE makro, ktére przedstawia listing [6| podczas gdy Zig robi to
idiomatycznie, estetycznie i zrozumiale, co wida¢ na listingu [7]
#define EBUR128_ADD_FRAMES (type) \
int eburi28_add_ frames_##type(\
eburi128_state* st, \
const typex src, \
size_t frames \
) { \
size_t src_indexr = 0; \
unsigned int c¢ = 0; \
for (c = 0; c < st->channels; c++) { \
st->d->prev_sample_peak[c] = 0.0; '\

Listing 6: Generyczna funkcja add_frames z ebur128.c

fn add_frames(
comptime T: type,
st: *state,
src: const Tk,
frames: usize

Listing 7: Generyczna deklaracja funkcji add_frames w Zigu

5.2.3 Instrukcje defer i errdefer

Te dwie funkcjonalnosci sg inspirowane funkcjonalnoscig jezyka Go [16]. Pozwalajg one
na wykonanie pewnej procedury z koricem zasiegu widocznosci (ang. scope) bloku w
ktore zostata zadeklarowana. errdefer wywotuje swojg procedure gdy poprzedzajgce
go try nie powiedzie sie.

Moim zdaniem znaczgco utatwiajg one realizowanie procedur, ktdre majg okreslony
poczatek i koniec, jak na przyktad zarzgdzanie pamigciag. Jest to szczegdlnie wazne
co pokazuje pseudokod C i Ziga na listingach [8]i[9 ktére majg obliczy¢ i wypisa¢ RMS
danego pliku. Im bardziej skomplikowane sg owe procedury tym wiekszy jest zysk.

5.2.4 Przenosnosc¢

W sekcji [5.1] wspomniatem, ze pierwotnie miatem zamiar aby moje oprogramowanie
dziatato réwniez na Windowsie. Zalezato mi rowniez na tym, aby wspierat platformy
RISC-V i ARM64 ze wzgledu na ich rosngcg popularnos¢ w urzadzeniach konsumenc-
kich.

34

https://github.com/jiixyj/libebur128/blob/67b33abe1558160ed76ada1322329b0e9e058b02/ebur128/ebur128.c#L977
https://go.dev
https://riscv.org
https://en.wikipedia.org/wiki/AArch64

infile = sf_open(file_path);
buffer = malloc();
if (buffer == NULL) {
// obstuga btedu
sf_close(file_path);
}
sf_readf (infile, buffer);
if (infile == NULL) {
// obstuga btedu
free(buffer);
sf_close(file_path);
}
// wyliczenie 1 wySwietlenie RMS
free(buffer);
sf_close(file_path);

Listing 8: Pseudokod C: kalkulacja i wyswietlenie RMS

infile = sf_open(file_path);
defer sf_close(file_path);

const buffer = try alloc(<rozmiar>);
defer free(buffer);

try sf_readf(infile, buffer);

errdefer free(buffer);
// wyliczenie 1 wyswietlenie RMS

Listing 9: Pseudokod Ziga: kalkulacja i wyswietlenie RMS

35

Kod Ziga jest w petni przenosny miedzy systemami operacyjnymi i architekturami.
Poziom przenosnosci jest naprawde imponujgcy: Zig wspiera takie architektury jak m68k,
loong, mips Cczy thumb i Srodowiska jak Haiku, UEFI, Serenity czy VisionOS. Oznacza
to, ze mdj projekt skonsolidowany dynamicznie jest ograniczany przez biblioteki C kto-
rych uzywa, czyli przez ANSI sndfile a bardziej C99 sndfile.

5.2.5 Lepsze doswiadczenie tworzenia oprogramowania

W jezyku Zig 0.14 i 0.15 pisato mi sie o wiele lepiej niz w jezyku C w standardzie C2x.
Przede wszystkim podobato mi sie uproszczenie recznego zarzgdzania pamiecig
przez wykorzystanie alokatorow. Poczatkowo korzystatem ze standardowego alokatora
C, czyli std.heap.c_allocator i zarzgdzatem pamiecig doktadnie w ten sam sposdéb
jak w SIMNS. Kiedy zaczgtem korzysta€ z std.heap.GeneralPurposeAllocator, kidry
przy podstawowym trybie kompilacji jest w istocie std.heap.debug_allocator, okazato
sie, ze moja aplikacja ma catkiem duzo wyciekéw pamieci! PéZniej pomogt mi tez w
niekorzystaniu z pamieci po jej zdealokowaniu. Bardzo ciesze sie, ze Zig zapewnia
rowniez te funkcje, ktdére dla C zapewnia kolejne oprogramowanie (np. Valgrind [36]).
Bardzo podobaty mi sie rowniez:

+ czyste wyrdznienie operacji kompilatora sktadnig @foo (),
» wbudowane logowanie, zaréwno w czasie kompilacji jak i wykonania,

» domysina zawartos¢ Sladu stosu i error return trac,

» w poréwnaniu do GCC o wiele bardziej czytelne btedy kompilacji.

5.3 Rozwdj sd2

Zanim usiadtem do programowania w Zigu postanowitem stworzy¢ okrojong wersje
SINMS ktdra bedzie analizowata plik i wyswietlata wyniki analizy w konsoli. Zmniejszyto
to ilos¢ linijek kodu (ang. Lines Of Code, LOC) o0 80%.

5.3.1 Porownanie do SINMS

Wersja 0.0.2 miata w sobie wszystkie funkcjonalnosci dema SINMS zawierajac 30%
wiecej kodu. Wersja 0.1.1 dziatata na systemach nie tylko POSIXowych, miata wszyst-
kie funkcjonalnosci SINMS i ich testy jednostkowe majac nieznacznie mniejszg ilos¢
LOC.

2Qryginalny i efektywny spos6b na pokazanie tego skad pochodzg btedy w kodzie i jak rozchodzg sie
W programie.

36

https://ziglang.org/download/0.15.1/release-notes.html#Support-Table
https://en.wikipedia.org/wiki/Motorola_68000
https://www.loongson.cn/EN/application/list?id=39
https://en.wikipedia.org/wiki/MIPS_architecture
https://www.sciencedirect.com/topics/computer-science/thumb-instruction-set
https://www.haiku-os.org/
https://uefi.org/
https://serenityos.org/
https://developer.apple.com/documentation/visionos/
https://github.com/jiixyj/libebur128?tab=readme-ov-file#features
https://github.com/libsndfile/libsndfile?tab=readme-ov-file#requirements
https://ziglang.org/documentation/master/std/#std.heap.c_allocator
https://ziglang.org/documentation/master/std/#std.heap.debug_allocator
https://cwe.mitre.org/data/definitions/416.html

5.3.2 Pierwsza biblioteka Ziga

W wersiji 0.1.0 wprowadzitem mozliwos¢ zapisu czasu w raporcie timestampem nie uni-
xowym (1000000000) aHTTP (2001.09.09 13:46:40). Te integracje z bibliotekg zig-time
[9] mozna wytgczy¢ kompilujgc program z flagg -Dwith_time=false.

5.3.3 Biblioteka yazap i model open-source

W tej samej wersji zaczgtem tez wykorzystywac yazap [7] do tworzenia komplekso-
wego interfejsu linii komend. Spetniat on wszystkie moje wymagania poza jednym: nie
wspierat okreslania wielu argumentéw pozycyjnych (positional arguments) w deklara-
tywny sposadb.

Dodatem tg funkcje lokalnie i w duchu oprogramowania open-source zapropono-
watem swoje zmiany tworcom biblioteki. Zostaty one przyjete i sd2-0.3. 1 wykorzystuje
funkcje Arg.multiValuesPositional z globalnie dostepnej kopii biblioteki.

Konicowo mdj interfejs spetnia wytyczne standardu POSIX.1-2024 [4].

5.3.4 small _float

W wersji 0.1.2 zmienitem doktadnos¢ zapisu efektéw analizy (trackFloat) z £32 do
f16, czyli z okoto 7 do 3 cyfr po przecinku [10]. Te opcje mozna zmieni¢ ustawiajgc
opcje kompilacji -Dsmall_float na false. Domysinie program uzywa szesnastu bitow
poniewaz w tabeli nie ma miejsca na wiecej niz dwa miejsca po przecinku.

5.3.5 Nowe TrackInfo

W wersji 0.2.0 zoptymalizowatem najwazniejszg strukture: TrackInfo. Jest ona tak
wazna poniewaz przechowuje rezultaty analizy poszczegdlnych utwordw.

Jej starg wersje przedstawia listing

Aby uprosci¢ obliczenie jej rozmiaru, wprowadze nastepujgce oznaczenia:

* S —rozmiar usize (size_t z C),

* ty —rozmiar trackFloat

* r, — @size0f (TrackInfo) dla <sd2-0.2.0,

e r, — @size0f (TrackInfo) dla >=sd2-0.2.0.

Przy domysinych ustawieniach kompilacji architektury 64bitowej, rozmiary te przyj-
mujg nastepujace rozmiary (podane w bajtach):

e S=4

‘tf:2

37

https://github.com/prajwalch/yazap/pull/32
https://github.com/prajwalch/yazap/pull/32

pub const TrackInfo = struct {
file_path: [Jconst u8,

channels: u4,
bit_depth: u7,
samplerate: u2l,

iLUFS: trackFloat,
LRA: trackFloat,

TPLs: [JtrackFloat,
RMSs: [JtrackFloat,

Listing 10: Struktura TrackInfo w wersjach <0.2.0

Oznacza to, ze r, bedzie réwny 32B:
re =25 +4+2f +45 = 32

Zainspirowany A Practical Guide to Applying Data Oriented Design postanowitem zmie-
ni¢ swojg strukture tak, aby obstugiwata maksymalnie dZzwiek stereo zastepujgc dwa
grube wskazniki na cztery pola trackFloat. To zmniejszyto rozmiar TrackInfo O nie-
malze czterdziesci procent:

o =25 +4+2f +4f, = 20

5.3.6 Standard REUSE

W wersiji 0.4.0 zmienitem styl licencjonowania swojego oprogramowania z klasycznego
pliku LICENSE na standard REUSE 3.3 [31]. Jest to inicjatywa Europejskiej Fundaciji
Wolnego Oprogramowania (FSFE) majgca uproscic licencjonowanie oprogramowania.

Jest to niezmiernie wazny temat, kiory dla matych projektow moze wydawac sie
wrecz pomijalny. Ja doswiadczytem tego jak ucigzliwe moga by¢ kwestie licencyjne
kiedy chciatem zaktualizowac paczke Signala w Gentoo i napotkatem ponad dwudzie-
stojednotysiecznolinijkowy plik ACKNOWLEDGMENTS.md.

Przyznam réwniez, ze chciatem skorzysta¢ z ustugi APl REUSE, poniewaz w tym
czasie pracowatem w FSFE i de facto bytem menedzerem zespotu ktdry miat jg zmo-
dernizowad.

5.3.7 Zmiany biblioteki standardowej Ziga

Zig 0.15 wprowadzit najwiecej zmian tamigcych kompatybilnosc¢ od wers;ji 0.9.0 z 2021
roku. Jedng z nich jest Writergate [39] ktdre wycofuje (deprecates) wszystkie implemen-

38

https://www.youtube.com/watch?v=IroPQ150F6c
https://fsfe.org
https://fsfe.org
https://packages.gentoo.org/packages/net-im/signal-desktop-bin
https://github.com/signalapp/Signal-Desktop/blob/main/ACKNOWLEDGMENTS.md

tacje operacji I/O z std.Io narzecz niegenerycznych std.io.Reader i std.Io.Writer.

Sama lista zmian opisuje te zmiany jako extremely breaking i w sekcji Motywacja
odsyta do seminarium Don't Forget to Flush z Systems Distributed 2025. Po obejrzeniu
tego wystgpienia bytem przekonany, ze jest to dobry eksperyment i cieszytem sie, ze
deweloperzy podijeli takg decyzje — w najgorszym wypadku bedzie to dowdd, ze jest
to zta sciezka. Wspomniany wczesniej ekstremalny stopien zepsucia funkcjonalnego
kodu odczutem znaczgco poniewaz zapis i odczyt plikow jest krytyczny dla mojego
programu.

Uwazam, Ze jest to jeden z "urokéw"korzystania z pot-ezoterycznego przez swojg
innowacyjnosc jezyka programowania i z tego powodu postanowitem wspomnie¢ o tym
w tej pracy.

5.3.8 Plik README

Pisanie pliku README odtozytem na sam koniec procesu tworzenia oprogramowa-
nia. Jako haker i mitosnik wolnego oprogramowania widziatem wiele takich plikow i nie
napotkatem jeszcze takiego, kiory w petni mi sie podobat.

Zanim zaczatem korzysta¢ z gBitTorrenta [30], ktéry nota bene teraz utrzymuje w
Gentoo, korzystatem i wspieratem BiglyBT [5]. Tam wtasnie po raz pierwszy miatem
stycznos¢ z naukowym podejsciem do pisania tych plikow gdy pewien doktorant Uni-
wersytetu w Melbourne zaproponowat ulepszenie README projektu. Nie zgadzatem
sie z zaproponowanym przez niego wzorem ale po raz pierwszy mogtem wskazag i
uzasadnic dlaczego.

Przeczytatem wiele nieautorytatywnych wpiséw na blogach na ten temat i pare arty-
kutéw naukowych. Jeden z nich [27] zdefiniowat siedem przyktadowych kategorii sekciji:

1. Co — kontekst i wstep,
2. Dlaczego — zalety projektu,
3. Jak —instalacja i uzytkowanie,
4. Kiedy — status, wersje i plan na przysztosc,
5. Kto — druzyna, spotecznosd, kontakt itd.,
6. Odwotania — dokumentacja, link do wsparcia, ttumaczenia
7. Wktad — sposob na wsparcie projektu.
Tak oceniam ich przydatnos¢ w moim projekcie:
1. Co — chciatem opisaé czym jest moje oprogramowanie i co robi,

2. Dlaczego — jako ciekawostke spisatem geneze projektu,

39

https://ziglang.org/download/0.15.1/release-notes.html#Writergate
https://packages.gentoo.org/packages/net-p2p/qbittorrent
https://packages.gentoo.org/packages/net-p2p/qbittorrent
https://github.com/BiglySoftware/BiglyBT/pull/3420
https://haoyu-gao.github.io
https://haoyu-gao.github.io
https://github.com/user-attachments/files/17773905/template-section.pdf

3. Jak —instalacja i kompilacja sg oczywiste lecz udokumentowatem rowniez opcje
kompilaciji,

4. Kiedy — mam oddzielny plik do spisywania zdan a do innych funkcji wykorzystuje
funkcjonalnosci platformy hostingowej,

5. Kto —fakt, Ze to solowy projekt jest oczywisty i nie zalezy mi na rozpoznawalnosci,
6. Odwotania — nie mam do czego sie odwotac,

7. Wktad — nie zalezy mi na wkfadzie innych ludzi, ale moge skorzysta¢ z funkcjo-
nalnosci hostingu.

Jestem raczej zadowolony ze swojego pliku README i doswiadczytem tego jak
wymagajgce jest dobre jego zaprojektowanie i implementacja.

5.4 Efektywnos$¢ dziatania

sd2 jednak korzysta z bibliotek C ktdre zostaty skompilowane zgodne z systemowymi
CFLAGS, podobnie jak SINMS. Sam program zostat skompilowany z flagg --release=fast
z kompilatorem zig-0.15.2.

Procedura pomiaru czasu wywotania pojedynczego procesu jest identyczna jak w
przypadku SINMS a jej wyniki przedstawia tabela[d] Procedura pomiaru czasu wywota-
nia wieloprocesowego pomija uzycie taskset a jej wyniki znajdujg sie w tabeli[5. Ponie-
waz jest to ostatnie pomiar podsumowatem zmierzone przeze mnie czasy na wykresie
na rysunku 5]

W idealnych warunkach program osmioprocesowy na osmiordzeniowym proceso-
rze powinien by¢ osiem razy szybszy niz program jednoprocesowy. Moje pomiary sg
kolejnym dowodem, ze idealne warunki sg daleko od rzeczywistosci poniewaz maoj pro-
gram nie byt szybszy o 700% a zaledwie 0 136%.

Jesli wytgczytbym hyperthreading idealny przyrost efektywnosci zmalatby do 300%
i zapewne ten realny réwniez by sie zwiekszyt.

Kolejnym kluczowym elementem jest ziarnisto$¢ zadan: im liczba plikdw n jest blizej
wielokrotnosci liczby rdzeni procesora ncpy tym przyrost bedzie wiekszy. W albumach
ktére wybratem srednia odlegtos¢ n mod ncpy jest réwna 3.(6).

Ponadto program bedzie najbardziej efektywny jesli wszystkie procesy skoriczg swoje
zadania jednoczesnie. Na przyktad analizujgc 6 identycznych utwordw czterema proce-
sami na czterodzieniowym procesorze przy aktualnym poziomie ziarnistosci obcigzenie
procesora bytoby réwne okoto 75%.

Koncowo jestem zadowolony z tego w jakim stopniu dodanie wielowgtkowosci zwiek-
szyto efektywnos¢ mojego programu i uwazam, ze implementacja tej funkcjonalnosci
zdecydowanie byta tego warta.

40

Tabela 4: Zestawienie jednowatkowej szybkosci analizy sd2 wybranych albumow

Album t;[s] ta[s] t3][s] tsr [S] v X [MBps]

HYT 2260 23.97 2594 2417 94 21.1
763 5259 51.39 51.75 51.91 90 17.4
MID 36.24 3545 3295 34.88 93 10.1
PPP 941 939 962 947 97 11.7
RAM 90.05 90.52 90.43 90.(3) 50 16.6
TTS 5239 53.61 53.08 53.03 51 18.9

Tabela 5: Zestawienie wielowatkowej szybkosci analizy sd2 wybranych albumdéw

Album t1[s] ta[s] t3][s] ter [S] v X [MBps]

HYT 10.45 10.25 10.17 10.29 220 49.6
763 21.00 20.75 20.68 20.81 226 43.5
MID 13.40 13.35 13.38 13.38 244 26.3
PPP 498 497 492 496 185 22.4
RAM 3845 36.66 37.29 37.47 119 40.0
TTS 19.32 21.61 23.53 21.49 126 46.5
263 _
I
N
MID —
I
£
§
< TTS _
I
HYT —
I
I

o
=
o

100 1000

Czas [s]

W Diugosc albumu
B Sredni czas analizy MusicScope
® Sredni czas analizy SINMS
Sredni czas jednowatkowej analizy sd2
W Sredni czas analizy sd2

Rysunek 5: Podsumowanie czasow

5.5 Status quo sd2

Korzystatem z sd2 od kiedy osiggneto funkcjonalnos¢ SINMS, czyli od kwietnia 2025
roku. W drugiej potowie tego roku program osiggnat swojg petng funkcjonalnosé. W
styczniu 2026 roku, po ekstensywnej dokumentacji kodu i dodaniu README, zostat on
opublikowany. Od tego momentu mozna znalez¢ go pod adresem https://codeberg.
org/fkobi/sd2.

Od tego momentu projekt jest publicznie dostepny jako wolne oprogramowanie i
rozwijany w modelu otwartozrédtowym. Kazdy internauta moze wchodzi¢ w réznorakie
interakcje z projektem: od zostawienia gwiazdki czy obserwowania repozytorium, przez
zgtaszanie bteddw az po sugerowanie konkretnych zmian z pomocg funkcjonalnosci
Pull requests.

42

https://codeberg.org/fkobi/sd2
https://codeberg.org/fkobi/sd2

Posumowanie

Znalaztem pewien aspekt zycia w ktérym nieoptymalnosé MusicScope byta dla mnie
problemem. |Dokonatem analizy tego programu|ijwyroznitem najwazniejsze cechy tego|
typu oprogramowanial celem znalezienia konkretnych aspektéw, ktére moge obiektyw-
nie ulepszyc.

Nastepnie zgodnie z iteracyjnym modelem kaskadowym stworzytem prototypy w
réznych jezykach programowania do momentu wybrania Ziga, czyli nowej dla mnie
technologii.

Korzystajgc z metodologii CI/CD zreimplementowatem od zera istniejace funkcjo-
nalnosci MusicScope ulepszajac je i czynigc je bardziej zgodnymi ze standardami, za-
leceniami i dobrymi praktykami.

Swojg prace upublicznitem pod Europejskg Licencjg Publiczng 1.2 na platformie
Codeberg zgodnie z duchem Wolnego i OtwartZzrédtowego Oprogramowania.

Moim celem byto stworzenie lepszego programu. Twierdze, ze mi sie to udato po-
niewaz [sd2)w poréwnaniu do MusicScope:

1. Mozna pobraé prosto od dewelopera z renomowanej platformy,
2. Dziata na znacznie wiekszej ilosci platform,
3. Jest on uzywalny dla uzytkownikdw z niepetnosprawnosciami,

4. Jest wolnym oprogramowaniem typu copyleft, co zapobiega zabsorbowaniu
przez korporacjd’]

5. Réwniez analizuje pliki zgodnie z miedzynarodowymi standardami,

6. Ma standardowy, deklaratywny, efektywny i intuicyjny interfejs,

7. W realnych warunkach dziata[ponad dwadziescia razy szybciej,

8. Produkuje o wiele bardziej ergonomiczne raporty.

13Przyktadem tego zjawiska niech bedzie freenginx, czyli fork projektu nginx rozwijanego permisyw-
nym BSD-2 ktéry zostat kupiony.

43

https://mailman.nginx.org/pipermail/nginx-devel/2024-February/K5IC6VYO2PB7N4HRP2FUQIBIBCGP4WAU.html
https://nginx.org
https://nginx.org/LICENSE
https://blog.nginx.org/blog/nginx-is-now-officially-part-of-f5

Podziekowania

Zaczne od podziekowar dla mojego promotora, czyli Barttomieja Stasiaka — dziekuje
mu za zadeklarowanie poparcia dla tematu tej pracy jeszcze przed moim czwartym
semestrem Informatyki Stosowane;j.

W drugiej kolejnosci podziekuje Europejskiej Fundacji Wolnego Oprogramowania za
przyjecie mnie na staz na stanowisko administratora systemow podczas mojego ostat-
niego semestru pierwszego stopnia studidow. W tym kontekscie dziekuje réwniez admi-
nistracji Wydziatu Fizyki Technicznej, Matematyki i Informatyki Stosowanej za umozli-
wienie mi de facto mieszkania i pracowania w Berlinie podczas studiowania w todzi.

Chce rowniez podzigkowac kazdemu kto zapewnit mi warunki do pracy nad tym pro-
jektem, stuzyt radg i pomocg w testowaniu a nawet po prostu stuchat moich pomystow
i prezentacji. Tym samym dziekuje rodzicom, kolegom z kierunku i pracy oraz teraz-
niejszym i przesztym przyjaciotom. Z szczegdlnoscia dziekuje Universita degli Studi di
Cagliari, poniewaz to podczas mojego Sardyniskiego Erasmusa podjgtem najwiecej de-
cyzji projektowych i to wtasnie w Cagliari napisatem najwiecej kodu sd2. Pomimo mojej
pdzZniej rejestracji ta instytucja zapewnita mi fizyczng i mentalng przestrzen w ktérej
moja kreatywnos¢ prosperowata.

Jako, ze jest to moja praca dyplomowa na kierunku Informatyka Stosowana chciat-
bym rowniez podziekowac wszystkim ktorzy zainspirowali mnie, umozliwili i byli wspar-
ciem w mojej zmianie kierunku z Fizyki Technicznej, a w szczegdlnosci: Michatowi Wa-
siakowi, Michatowi Dobrskiemu, |dzie Haider, Mariowi Linsowi, Tobiasowi Hdéllerowi,
Gabrielowi Molnarowi, Agnieszce Wosiak, Jakubowi Samkowi, tukaszowi Moskwie,
Romanowi Krasiukianisowi, Michatowi Karbowariczykowi i Mateuszowi Smoliriskiemu.

Na koniec podzigkuje twércom jezyka programowania Zig i wykorzystanych przeze
mnie bibliotek — jesli miatbym stworzyC chociaz jedng z nich przed terminem skonczenia
studiow sd2 byto by z pewnoscig gorszym oprogramowaniem.

Poznajcie inZyniera

W ostatnich godzinach pisania tego dokumentu myslatem coraz wiecej o cytacie z filmu
Meet the Engineer kidry jest w zasadzie monologiem tytutowej postaci. Zaczyna sie on
nastepujgco:

Jestem inzynierem wiec rozwigzuje problemy. Nie takie w stylu Czym jest
piekno? poniewaz one przypadajg do obszaru twoich dylematéw filozoficz-
nych. Ja rozwigzuje praktyczne problemy.

44

https://www.youtube.com/watch?v=SNgNBsCI4EA&pp=ygURbWVldCB0aGUgZW5naW5lZXI%3D

Bibliografia

[1] Alacritty, a cross-platform, OpenGL terminal emulator. 3 paz. 2018. URL: https:
//alacritty.org.

[2] Algorithms to measure audio programme loudness and true-peak audio level. Re-
komendacja BS.1770. International Telecommunication Union, 2007.

[3] Astral. Ruff, an extremely fast Python linter and code formatter. 29 sierp. 2022.
URL: https://docs.astral.sh/ruff/.

[4] Austin Common Standards Revision Group. Portable Operating System Interface.
Standard IEEE 1003.1. Institute of Electrical i Electronics Engineers, 2024.

[5] BiglyBT, a feature filled, open source, ad-free, bittorrent client. 16 maj. 2006. URL:
https://www.biglybt.com.

[6] Erik de Castro Lopo. libsndfile. 15 lut. 1999. URL: https://libsndfile.github.
io/libsndfile/.

[7]1 Prajwal Chapagain. yazap, The ultimate Zig library for seamless command line
argument parsing. 28 sierp. 2022. URL: https://github.com/PrajwalCH/yazap.

[8] Compact disc digital audio system. Standard IEC 60908:1987. Genewa, Szwaj-
caria: International Electrotechnical Commission, 1987.

[9] Meghan Denny. zig-time, a date and time parsing and formatting library. 17 paz.
2021. URL: https://github.com/nektro/zig-time.

[10] Floating-Point Arithmetic. Standard IEEE 754. Institute of Electrical i Electronics
Engineers, 1985.

[11] Free Lossless Audio Codec (FLAC). Standard RFC 9639. Internet Engineering
Task Force, 2024.

[12] Fundacja Gentoo. Gentoo Linux. 31 mar. 2002. URL: https://www.gentoo.org.

[13] Roy lvy lll'i Terts Diepraam. uutils, a cross-platform Rust rewrite of the GNU co-
reutils. 20 kw. 2020. URL: https://github.com/trifectatechfoundation/sudo-

I's.

[14] Information technology — Programming languages — C. Standard ISO/IEC 9899:2024.
Genewa, Szwajcaria: International Organization for Standardization, 2024.

[15] Andrew Kelly. ,A Systems-Minded Approach to Creating a Music Player Appli-
cation”. Seminarium na konferencji. Systems Distributed '24. 2024. URL: https:
//www . youtube.com/watch?v=SCLrNqc9jdE&t=330 (term. wiz. 03. 12.2025).

45

https://alacritty.org
https://alacritty.org
https://docs.astral.sh/ruff/
https://www.biglybt.com
https://libsndfile.github.io/libsndfile/
https://libsndfile.github.io/libsndfile/
https://github.com/PrajwalCH/yazap
https://github.com/nektro/zig-time
https://www.gentoo.org
https://github.com/trifectatechfoundation/sudo-rs
https://github.com/trifectatechfoundation/sudo-rs
https://www.youtube.com/watch?v=SCLrNqc9jdE&t=330
https://www.youtube.com/watch?v=SCLrNqc9jdE&t=330

[16] Andrew Kelly. ,,ZIG, a Programming Language for Maintaining Robust, Reusable
software”. Seminarium na konferencji. Emerging Technologies for The Enterprise
Conference. 2019. URL: https : //www . youtube . com/watch ? v=Gv2I7qTux7g
(term. wiz. 03.01.2026).

[17] Jan Kokemidiller. libebur128. 13 list. 2013. URL: https://github.com/jiixyj/
libeburi28.

[18] Loudness normalisation and permitted maximum level of audio signals. Reko-
mendacja R 128. European Broadcasting Union, 2014.

[19] Lulu "Morganamilo". Ruff, an extremely fast Python linter and code formatter.
28 paz. 2020. URL: https://github.com/Morganamilo/paru.

[20] John MacFarlane, Martin Woodward i Jeff Atwood. CommonMark Spec. Standard
0.31.2. 2024. URL: https://commonmark. org.

[21] Mojang Studios. Minectaft na AppleTV. 19 grud. 2016. URL: https://minecraft.
fandom.com/wiki/Apple_TV_Edition.

[22] Music Player Daemon. Wer. 0.24.5. 31 lip. 2025. uRL: https://www.musicpd. org.

[23] NME. Bloc Party remove A Weekend In The City: B-Sides’ from streaming. Data
publikacji: 2024-11-22. 2024. URL: https://www.nme . com/news/music/bloc-
party-remove - a-weekend - in-the-city-b-sides-from- streaming - the -
audio-quality-was-well-below-what-we-expect-3815170 (term. wiz. 04.12.2025).

[24] OpenMP Architecture Review Board. OpenMP. 1 paz. 1997. URL: http://openmp.
org.

[25] David Peter. bat, a cat(1) clone with wings. 22 kw. 2018. URL: https://github.
com/sharkdp/bat.

[26] PipeWire. Wer. 1.4.9. 9 paz. 2025. URL: https://pipewire.org.

[27] G.A.A. Prana, C. Treude i F. Thung. ,Categorizing the Content of GitHub RE-
ADME Files”. W: Empirical Software Engineering 24 (2019), s. 1296—1327.

[28] Projekt GNOME. Assistive Technology Service Provider Interface. 2001. URL:
https://gitlab.gnome.org/GNOME/at-spi2-core.

[29] Projekt GNOME. Orca. 3 wrz. 2006. URL: https://gitlab. gnome . org/GNOME/

orca.

[30] gBittorrent BitTorrent client. 16 maj. 2006. URL: https://ziglang.org/download/
0.15.1/release-notes.html.

[81] REUSE Specification. Standard 3.3. Berlin, Niemcy: Free Software Foundation
Europe, 14 list. 2024.

46

https://www.youtube.com/watch?v=Gv2I7qTux7g
https://github.com/jiixyj/libebur128
https://github.com/jiixyj/libebur128
https://github.com/Morganamilo/paru
https://commonmark.org
https://minecraft.fandom.com/wiki/Apple_TV_Edition
https://minecraft.fandom.com/wiki/Apple_TV_Edition
https://www.musicpd.org
https://www.nme.com/news/music/bloc-party-remove-a-weekend-in-the-city-b-sides-from-streaming-the-audio-quality-was-well-below-what-we-expect-3815170
https://www.nme.com/news/music/bloc-party-remove-a-weekend-in-the-city-b-sides-from-streaming-the-audio-quality-was-well-below-what-we-expect-3815170
https://www.nme.com/news/music/bloc-party-remove-a-weekend-in-the-city-b-sides-from-streaming-the-audio-quality-was-well-below-what-we-expect-3815170
http://openmp.org
http://openmp.org
https://github.com/sharkdp/bat
https://github.com/sharkdp/bat
https://pipewire.org
https://gitlab.gnome.org/GNOME/at-spi2-core
https://gitlab.gnome.org/GNOME/orca
https://gitlab.gnome.org/GNOME/orca
https://ziglang.org/download/0.15.1/release-notes.html
https://ziglang.org/download/0.15.1/release-notes.html

[32]

[33]

[34]

[35]

[36]

[37]

[38]
[39]

Dennis M. Ritchie. The Development of the C Language. Nowy Jork, USA: ACM
SIGPLAN Notices, 1993, s. 201-208.

Sky News. Kanye West’s new album Donda 2 will be only be available exclusively
on his own platform the Stem Player. Data publikacji: 2022-02-18. 2022. uRL:
https://news.sky.com/story/kanye-wests-new-album-donda-2-will-be-

only-be-available-exclusively-on-his-own-platform-the-stem-player-
12545167 (term. wiz. 03. 12.2025).

Richard Stallman. GNU Emacs. 20 mar. 1985. URL: https : //www . gnu . org/

software/emacs/.

Trifecta Tech Foundation. sudo-rs, a memory safe implementation of sudo and su.
29 sierp. 2023. URL: https://github.com/trifectatechfoundation/sudo-rs.

Valgrind,an instrumentation framework for building dynamic analysis tools. 27 lip.
2002. URL: https://www.valgrind.org.

Xi-Vero. MusicScope. WebArchive. 2015. URL: https://www.xivero.com/musicscope/
(term. wiz. 20.05.2018).

Wine. Wer. 10.0. 21 sty. 2025. URL: https://www.winehq.org.

Zig Software Foundation. Zig 0.15.1 Release Notes. Wer. 0.15. 2025. URL: https:
//ziglang.org/download/0.15.1/release-notes.html.

47

https://news.sky.com/story/kanye-wests-new-album-donda-2-will-be-only-be-available-exclusively-on-his-own-platform-the-stem-player-12545167
https://news.sky.com/story/kanye-wests-new-album-donda-2-will-be-only-be-available-exclusively-on-his-own-platform-the-stem-player-12545167
https://news.sky.com/story/kanye-wests-new-album-donda-2-will-be-only-be-available-exclusively-on-his-own-platform-the-stem-player-12545167
https://www.gnu.org/software/emacs/
https://www.gnu.org/software/emacs/
https://github.com/trifectatechfoundation/sudo-rs
https://www.valgrind.org
https://www.xivero.com/musicscope/
https://www.winehq.org
https://ziglang.org/download/0.15.1/release-notes.html
https://ziglang.org/download/0.15.1/release-notes.html

Spis rysunkow

(1 Intertejs MusicScope swiezo po uruchomieniu|. 17
2 Okno About MusicScope| 19
[3 Raport graficzny MusicScope utworu Soma| 19
4 Diagram stanow MusicScope z perspektywy uzytkownikal 20
5 Podsumowanie czasOwl 41
Spis tabel
(1 Informacje o albumach wykorzystanych do testowania efektywnosci analizy| 12
2 Zestawienie szybkosci analizy MusicScope wybranych aloumow| 22
3 Zestawienie szybkosci analizy SINMS wybranych aloumow| 28
4 Zestawienie jednowgtkowej szybkosci analizy sd2 wybranych albumdw|. 41
5 Zestawienie wielowatkowej szybkosci analizy sd2 wybranych aloumow| . 41

Spis kodéw

48

1 Mockup wykorzystania imperatywnego interfeju linii komend sinms| . . . 26
2 Przyktadowe wykorzystanie SINMS| 27
3 Fragment track_info.zig ukazujgcy uzycie biblioteki C ebur128| 32
4 Deklarowane wersjiw Zigu| Lo 33
b Deklarowaniewersjiw C|. oo 33
6 Generyczna funkcja add_frames z ebur128.c/ 34
[/ Generyczna deklaracja funkcji add_framesw Zigu| 34
8 Pseudokod C: kalkulacja i wyswietlenie RMS| 35
9 Pseudokod Ziga: kalkulacja i wyswietlenie RMS|. 35
10 Struktura TrackInfo w wersjach <0.2.00 38

	Wstęp
	Cel i zakres pracy
	Analiza albumów muzycznych
	Cechy dobrego programu do analizy albumów
	Dostępność
	Dostępność technologiczna
	Dostępność dla osób z niepełnosprawnościami (accessibility)
	Dostępność prawna

	Kompleksowość analizy
	Przykładowe zastosowanie wskaźników

	Efektywność
	Ergonomia interfejsu
	Efektywność analizy
	Pomiar efektywności analizy
	Ergonomia raportów

	MusicScope
	Dostępność technologiczna
	Accessibility
	Dostępność prawna
	Uzyskiwanie
	Rozpowszechnianie

	Kompleksowość analizy
	Ergonomia interfejsu
	Przedstawienie interfejsu
	Przedstawienie użytkowania
	Ocena

	Efektywność analizy
	Ergonomia raportów
	Podświetlanie składni
	Szerokość tabeli
	Ekscesywna ilość raportowanych danych

	Podsumowanie

	Próba pierwsza: SINMS
	Interfejs użytkownika
	Usunięcie zbędnych elementów GUI
	Zmiana celu interfejsu analizy
	Interfejs linii komend (CLI)
	Deklaratywność
	Podsumowanie

	Język programowania i biblioteki
	Raportowanie
	Efektywność działania
	Status quo SINMS
	Haskellowe SINMS

	Próba druga: sd2
	Język programowania i biblioteki
	C++
	Rust
	Zig

	Zalety Ziga
	Pełna kompatybilność z C
	Koncept comptime
	Instrukcje defer i errdefer
	Przenośność
	Lepsze doświadczenie tworzenia oprogramowania

	Rozwój sd2
	Porównanie do SINMS
	Pierwsza biblioteka Ziga
	Biblioteka yazap i model open-source
	small_float
	Nowe TrackInfo
	Standard REUSE
	Zmiany biblioteki standardowej Ziga
	Plik README

	Efektywność działania
	Status quo sd2

	Podsumowanie
	Podziękowania
	Bibliografia
	Spis rysunków
	Spis tabel
	Spis kodów

